Engineering Transactions, 13, 2, pp. 247-268, 1965

### Zastosowanie Metody Kollokacji do Obliczenia Sprężysto-Plastycznych Ugięć Belek o Skrepowanej Przesuwności Podpór

Z. Waszczyszyn

Poland

The used collocation method consists in assuming the form of the deflected beam i.g. in assuming the distribution function of the slope ϕ =Aϕ. In addition to the constant A the collocation function has three free parameters which can to be determined from the boundary conditions and two collocation conditions. The first condition is that of agreement between the curvature as computed by exact equations (based on the theory of finite deflections for a beam with strechable axis) and by means of the collocation function assumed. The other collocation condition is that of agreement of the shear forces above the support. The satisfaction of both conditions is called the method of two-point collocation while the satisfaction of the first condition alone is called the method of one-point collocation. A solution for an elastic beam with restricted displacement of the supports is obtained by means of one- and two-point collocation. Confrontation of results shows good agreement with the exact method within 3 much greater range than with the perturbation method [21]. The introduction of a single collocation function facilitates considerably the computation of the elastic-plastic deflection because the assumption of a single function for the entire beam enables to avoid the difficulty of joining the regions of different types of stress distribution. The solution obtained for a rectangular beam made of a perfect elastic-plastic material is illustrated by a numerical example.

Full Text: PDF

#### References

[in Russian]

L. GOLLATZ, Numerische Behandlung von Differentialgleichungen, Springer (tlum. Polskie

PWN, W-w 1960), Berlin-Göttingen-Hedelber, 1958.

R.A. FRAZER, W.P. JONES, S. W. SKAN, Aproximations to functions and to the solutions of differential equations, Report and Memoranda No 1799 (2913), Aeronautical Research Committee, 1937.

R. FRISCH-FRAY, Flexible Bars, Butterworth's, London 1962.

[in Russian]

[in Russian]

[in Russian]

[in Russian]

R. LIEBOLD, Die Durchbiegung einer beidseitig fest eingespannten Blattfeder, Z. angew. Math. Mech. 7/8, 28 (1948), 247-248.

J. MANDES, Wybrane zagadnienia z teorii belek prostych, Prace Inst. Techn. Bud., Seria B. Statyka i Wytrzymalości, 21, PWT, 1963.

, J. ORKISZ, Principles of choosing multi-pointed equivalent cross-section for elastic-plastic beams, Bull. Acad. Polon. Sci., Série Sci. Techn., 10, 10 (1962), 405-414.

J. ORKISZ, M. ZYCZKOWSKI, Male ugięcia sprężysto-plastyczne belek o dowolnym przekroju, Rozpr. Inżyn. 4, 11 (1963), 677-712.

[in Russian]

H. E. SALZER, CH. N. RICHARDS, I. ARSHAM, Table for the Solution of Cubic Equations, McGraw-Hill, New York 1958,

J. SZARSKI, T. WAZEWSKI, Uwagi o równaniu struny drgającej, Zesz. Nauk. UJ, Mat-Fiz-Chem, 1, Kraków 1953.

E. TAKABAYA, Zur Berechnung des beiderseits eingemauerten Trägers unter besonderer Be-

rücksichtigung der Längskraft, Springer, Berlin 1924.

S. P. TIMOSHENKO, Strength of Materials, P. II. Advanced Theory and Problems, D, van Nostrand Co., New York-Toronto-London.

S. P. TIMOSHENKO, S. WOJNOWSKY-KRIEGER, Theory of Plates and Shells (tłum. pol., Wyd.

«Arkady» W-wa 1962) Mc Graw-Hill, New York-Toronto-London 1959.

Z. WASZCZYSZYN, M. ŻYCZKOWSKI Finite elastic deflections of a stretchable beam on im-movable supports, Arch. Mech. Stos., 1, 14 (1962), 61-82.

Z. WASZCZYSZYN, M. ŻYCZKOWSKI, Finite deflections of elastic-plastic beams, the stretch-ability of their axes being taken into account, Bull. Acad. Polon. Sci., Série Sci. Techn., 10, 11 (1963), 347-358.

Z. WASZCZYSZYN, Przybliżone obliczania dużych ugięć sprężystych belki na podporach nieprzesuwnych, Rozpr. Inzyn., 1, 10 (1962), 95-113.

Z. WASZCZYSZYN, Obliczanie belki na podporach nieprzesuwnych jako ramy portalowej o niskich slupach, Arch. Inzyn. Ladow., 4, 8 (1962), 395-416.

S. WAY, Referat na National Meeting of Applied Mechanics, ASME, New Haven 1932.