Engineering Transactions, 10, 2, pp. 281-305, 1962

Obliczanie Wytężenia Materiału w Stanach Podkrytycznych

M. Życzkowski
Politechnika Krakowska
Poland

This is a continuation of Ref. [16], where a general measure of the «exertion» of material in sub- critical states is proposed (degree in which the physical state of the material approaches the dangerous state). This measure, expressed by the Eqs. (1.2) and (1.3), depends on the distribution of the density of probability p of reaching the limit surface in each particular direction. In the case of the proportional loading process (the point probability) it becomes identical with the «reduced stress». Some examples of computation of the exertion are given in the case of a two-dimensional space of exertion factors. Closed-form solutions are obtained in the case where the limit curve is composed of rectilinear segments (Figs. 2 and 3) or is an elliptic or parabolic curve (Figs. 5 and 7 respectively) with a step-like probability distribution. These are the most frequent cases of limit curves. In the latter two cases the results are expressed by means of elliptic integrals. A parabola may correspond to a simultaneous action of stress and temperature. The influence of the distribution of the probability density p assumed on the results obtained is analysed and illustrated by Tables
4-7 and Figs. 8-11. With other forms of the limit curve (limit surface) or with other distributions of probability density p and, especially, with a higher number of dimensions of the space of exertion factors it will, as a rule, be necessary to use approximate integration methods. These methods are discussed briefly in Sec. 2.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

J. ALBRECHT, L. COLLATZ, Zur numerischen Auswertung mehrdimensionaler Integrale, Z. angew. Math. Mech. 1/2, 38 (1958), 1-15.

E.F. BECKENBACH (Editor), Modern Mathematics for the Engineer, McGraw-Hill, New York: 1956.

[in Russian]

W. BURZYNSKI, Studium nad hipotezami wytężenia, Akademia Nauk Technicznych, Lwów 1928.

P. F. BYRD, M.D. FRIEDMAN, Handbook of Elliptic Integrals, Springer, Berlin-Göttingen- Heidelberg 1954.

C.E. FRÖBERG, Complete Elliptic Integrals, CWK Gleerup, Lund Univ. 1957.

[in Russian]

K. HAYASHI, Fünfstellige Funktionentafeln, Springer, Berlin 1930.

A. S. HOUSEHOLDER, Principles of Numerical Analysis, McGraw-Hill, Tłum. ros.: Izd. Inostr. Lit., Moskwa 1956. New York 1953.

[in Russian]

R. MISES, Numerische Berechnung mehrdimensionaler Integrale, Z. angew. Math. Mech. 6, 34 (1954), 201-210.

W. OLSZAK, Zagadnienie ortotropii w teorii nośności granicznej płyt, Arch. Mech. Stos., 2, 5 (1953), 329-350.

[in Russian]

[in Russian]

C. TORRE, Grenzbedingungen für spröden Bruch und plastisches Verhalten bildsamer Metalle, Öster. Ing.-Arch. 2, 4 (1950), 174-189.

M. ŻYCZKOWSKI, Wytężenie materiału w stanach podkrytycznych, Rozpr. Inzyn., 4, 8 (1960), 725-761.

M. ŻYCZKOWSKI, Powierzchnie graniczne w teorii wytężenia, Rozpr. Inzyn., 4, 9 (1961).