Engineering Transactions, 13, 3, pp. 561-586, 1965

O Potęgowej Postaci Mechanicznego Równania Stanu z Uwzględnieniem Temperatury

J. Klepaczko
Instytutu Podstawowych Problemów Techniki
Poland

The conception of mechanical equation of state is analysed, involving strain, strain rate and temperature. Four conditions limiting this conception are introduced. Next, is discussed the exponential law, proposed for constant temperature by B. A. DAVIS, The analysis of existing experimental data shows that each material constant depends on the temperature,
therefore the equation in question can be written thus
(…), where m(T) denotes the strain-hardening exponent n(T)-the rate sensitivity and B(T)-the plastic modulus, all the three quentities being dependent on the temperature. The fundamental equations are obtained from an analysis of experimental results of tension or compression tests at constant strain rates and various temperatures. If the temperature is treated as a parameter, these equations describe in a satisfactory manner the first stage of creep and the phenomenon of relaxation. If the temperature depends on time, differential equations are obtained describing both phenomena. If the variability of temperature is prescribed, results can be obtained numerically. The obtained equations determine the influence of strain, strain rate and temperature on the strain-hardening curve and describe the behaviour of metals such as aluminium, copper, lead etc.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

P. LUDWIK, Elemente der technologischen Mechanik, Springer, Berlin 1909.

J. E. DORN, A, GOLDBERG, T. E. TIETZ, The effect of thermal mechanical history on the strain hardening of metals, Trans. AIME, 180 (1949), 205.

T. E. TIETZ, J. E. DORN, The effect of strain histories on the work hardening of metals, Trans, ASM, 41A (1949), 163.

O. D. SHERBY, A. GOLDBERG, J. E. DORN, Effect of prestrain histories on the creep and tensile properties of aluminium, Trans. ASM, 46 (1954), 681.

J. D. LUBAHN, R. P. FELGAR, Plasticity and Creep of Metals, J. Wiley 1961.

J. H. HOLLOMON, The mechanical equation of state, Trans. AIME, 171 (1947), 535.

[in Russian]

[in Russian]

H. A. LEQUEAR, J. D. LUBAHN, Some transient effects during creep and tensile of an aluminium alloy, Trans. AIME, 206 (1956), 497.

J. KLEPACZKO, Zjawisko starzenia podczas deformacji plastycznej i wpływ prędkości odkształcenia dla aluminium, Rozpr. Inzyn., 3, 12 (1964).

J. D. LUBAHN, Strain aging effects, Trans. ASM, 44 (1952), 643.

B. CHALMERS, Physical Metallurgy, J. Wiley 1959.

J. F. ALDER, V.A. PHILLIPS, The effects of strain rate and temperature on the resistance of aluminium, copper and steel to compression, J. Inst. Metals, 83 (1954-55), 80.

J. L. CHIDDISTER, L. E. MALVERN, Compression-impact testing of aluminium at clevated temperatures, Experimental Mechanics, 4, 3 (1963), 81.

H. A. LEQUEAR, Certain departures from plastic ideality at large strains, Proc. ASTM, 55. (1955), 824.

J. D. LUBAHN, H.A. LEQUEAR, Certain departures from plastic ideality at small strains, Trans. ASME, 79 (1957), 97.

J. D. LUBAHN, Creep-tension relations at low temperatures, Proc. ASTM, 52 (1952), 905.

E.A. DAVIS, Creep and relaxation of oxygen-free copper, J. Appl. Mech., 10 (June 1943), A, 101.

A. NÁDAI, Theory of Flow and Fracture of Solids, Vol II, McGraw-Hill 1963.

E. A. DAVIS, Creep of metals at high temperature in bending, J. Appl. Mech., 5 (1938), A29.

J. E. DORN, Some fundamental experiments on high temperature creep, J. Mech. Phys. of Solids; 2, 3 (1954), 85.

T. E. TIETZ, J. E. DORN, Creep of copper at intermediate temperatures, Trans. AIME, 206, (1956), 156.

R. W. GUARD, W. R. HIBBARD, Tensile creep of high purity aluminium, Trans. AIME, 206 (1956), 195.

[in Russian]

D. McLEAN, Mechanical Properties of Metals, J. Wiley 1962. 26. J. D. LUBAHN, Derivation of stress, strain temperature, strain-rate relation for plastic deformation, J. Appl. Mech., 14 (1947), A229.

J. WEERTMAN, Creep of polycrystallins aluminium as determined from strain rate tests, J. Mech. Phys. of Solids, 4 (1955-56), 230.

H. I. LIEH HUANG, O.D. SHERBY, J. E. DORN, Activation energy for high temperature creep of high purity aluminium, Trans. AIME, 206 (1956), 1385.

C. W. MACGREGOR, J. C. FISHER, Tension tests at constant true strain rates, J. Appl. Mech., 12 (1945), A217.

C. W. MACGREGOR, J. C. FISHER, A velocity-modified temperature for the plastic flow of

metals, J. Appl. Mech., 13 (1946), A11.

T. A. TRÔZERA, O.D. SHERBY, J. E. DORN, Effect of strain rate and temperature on the plastic deformation of high purity aluminium, Trans. ASM, 49 (1957), 173. 32. M. MANIOINE, A. NÁDÁI, High speed tension tests at elevated temperatures, Proc. ASTM,

(1940), 822.

R. P. CARREKER, W.R. HIBBARD, Tensile deformation of high purity copper as a function of temperature, strain rate, and grain size, Acta Met., 1 (1953), 654.

[in Russian]

H. E. SOPER, The Numerical Evaluation of the Incomplete Beta-Function, Tracts for Computers, No 7, Cambridge University Press 1921.