Oszacowanie Odpowiedzi Struktury Mechanicznej na Dowolne Wymuszenie
A method is proposed for estimation of the response of a mechanical system to an arbitrary excitation. Starting with a general model of the structure and three kinds of damping, the concept of maximum receptance playing the role of dynamic characteristics is presented. This concept is then used to determine the response of the structure to arbitrary types of harmonic excitations. When the excitation is considered as a random process, the corresponding variance of the response is derived. Numerical and experimental examples are given.
References
E. SKUDRZYK, Simple and complex viabratory systems, The Pensylvania State University Press, 248 - 255, 1968.
D. J. MEAD, The vibration characteristics of damped sandwich plates with stiffeners and various boundary conditions, Strojnicky Casopis, 22, 1, 1971.
F. KANDIANIS, Frequency response of structures excited by transient or random forces using cross correlation and Laplace transform, I.S.V.R. Tech. Report, University of Southampton, No 47, August 1971.
[in Russian]
J. M. HARRIS, CH. E. CREDE, Shock and vibration handbook, Vol. 1, 1, Chapt. 2, Mc Graw-Hill, New York 1961.
E. KAMINSKI, Identyfikacja układów mechanicznych z członami lepkosprężystymi, ITBP Reports, 37, 1971.
[in Russian]
A. A. SWIESZNIKOW, Podstawowe metody funkcji losowych, s. 91, 103, PWN, Warszawa 1965.
[in Russian]
CZ. CEMPEL, R, GAPSKI, J. KOMOSINSKI, ST. PRZYGÓRZEWSKI, Badania statyczne i dynamiczne obrabiarek zespołowych, Materiały Konferencji Naukowej Wydziału Mechaniczno-Technologicznego Politechniki Poznańskiej, Wydawnictwo Politechniki Poznańskiej 1972 (w druku).