Engineering Transactions, 19, 3, pp. 389–405, 1971

### Praca sprężystych skręcanych ortotropowych powłok walcowych po utracie stateczności

Politechnika Łódzka
Poland

The work of elastic orthotropic twisted cylindrical shells after loss of stability

In this paper consideration is given to a nonlinear problem of the stability of orthotropic cylindrical shells freely supported on the edges and subjected to twisting. Shells of material and constructed orthotropy are examined.

The problem is solved by the application of an approximate energetic method. The shape of the bending function is assumed to be for the linear problem of the form of (3.1) and for the nonlinear problem of the form of (3.2).

The nondimensional upper critical stress Y0 and number of waves in the n circumstance are marked.

During the solution of the nonlinear problem, use is made of the periodical condition of the circumferential movement v((∂v/∂y) dy = 0). The lower critical stress has the form Ymin = βY0.

Also given are the upper and lower critical moment equations for the relation between non-dimensional relative stress Y/Y0, and the amplitude of the wave (parameter f). The relative twisting angle of the shell θśr/θ0 is determined. Further determined is the relative approach of the two edges of the shell ΔL.

The problem is solved for the following two boundary conditions:

1)   when the boundary of the shell has freedom of relative displacement in the longitudinal direction, then

Ymin = βY0 = 0.855Y0;

2)   when the two boundaries have during twisting no possibilities of relative longitudinal displacement ΔL = 0, then

Ymin = βY0 =0.98Y0.

The solution of the linear problem for both the boundary conditions considered is identical.
Full Text: PDF

#### References

T. Galkiewicz, Nieliniowe zagadnienie stateczności ortotropowej powłoki walcowej poddanej skręcaniu, Arch. Budowy Maszyn, 12, 4, 1965.

T. Galkiewicz, Stateczność ortotropowej żebrowanej długiej powłoki walcowej, Zesz. Nauk. Polit. Łódzkiej, Mechanika, z. 10, nr 51, 1963.

T. Galkiewicz, Analiza wzorów dotyczących stateczności powłok walcowych i stożkowych, podpartych swobodnie na krawędziach i poddanych skręcaniu, Zesz. Nauk. Polit. Łódzkiej, praca oddana do druku w 1970.

T. Galkiewicz, Badania ortotropowych powłok walcowych poddanych skręcaniu, Zesz. Nauk. Polit. Lodzkiej, praca oddana do druku w 1970.

Z. Parszewski, Krytyczne obciążenie przy skręcaniu cylindrycznej powłoki ortotropowej o skończonej długości, Arch. Mech. Stos., 7, 3, 1955.

S.P. Timoshenko, J.M. Gere, Teoria stateczności sprężystej, Arkady, Warszawa 1963.

А.С. Вольмир, Устойчивость деформируемых систем, НАУКА, Москва 1967.