Metody Zastosowania Rachunku Tensorowego w Technice
A short historical introduction indicates the ways in which the methods of tensor calculus have been applied to problems of mechanics and electrotechnics. Since the paper is destined for technicians, it has been considered desirable to explain some fundamental notions relating to tensors. The geometrical interpretation of tensor transformations in Cartesian cordinates was taken as the starting point, generalizing the notion to curvilinear co-ordinates and to Riemannian space.
The basis of technical applications of tensor analysis is the physical
interpretation of the tensor. The tensorial character of physical relations and the use of tensors for detecting invariable features of the investigated object are discussed. The methods of dimensional analysis are com- pared with those of tensor algebra. Next, the physical differences be- tween the notion of the tensor and that of the matrix are investigated.
It was found that in technical problems there are three types of tensor
transformations:
(a) formal transformations, in which the type of the object is not changed,
(b) formal transformations changing the type of the object,
(c) transformations representing real changes in the object. Each type of transformation is characterised and examples given. The advantages of tensor calculus in technical problems resulting from its general and synthetic character and its suitability for calculations are analysed. The whole of the 'applications discussed is divided into two groups of problems, the first concerning continuous media, and the other systems of many degrees of freedom. The tensorial character of physical quantities relative to the elastic and the electromagnetic fields are discussed, as well as special types of tensors used for investigation of continuous media. It was found that the methods of tensor calculus, when suitably modified, can be applied in the following branches of technics, concerning continuous media:
(a) classical theory of elasticity, especially the theory of anisotropic bodies,
(b) theory of finite deformations,
References
M. Abraham-R. Becker, Theorie der Elektrizität, t. 1, Teubner, Lipsk 1932.
R. Ariano, Deformazioni finite, Hoepli, Mediolan 1936.
P. Appel-R. Thiry, Mécanique rationelle, t. 5, Gauthier-Villars, Paryz 1932.
N. H. Arutiunian, Trudy IV konfieriencji po bietonu i żelezobietonnym konstrucjam, Strojizadat, Moskwa 1949.
J. Barbotte, Le calcul tensoriel, Masson, Paryz 1948.
W. Bieriendiejew, isczislenja w O rabotach Krona po primienienju tiensornowo elektrotiechnikie, Elektriczestwo 12 (1950), str. 78.
P. G. Bergmann, Introduction to the Theory of Relativity, Prentice- Hall, New York 1942.
L. Brillouin, Les tenseurs en mécanique et en élasticité, Masson Paryz 1949.
W. B ul g a k o w, Kolebanja, t. 1, Gostiechizdat, Moskwa 1949.
P. Burgatti, Sulle deformazioni finite dei corpi continui, Mem. dell Ac. di Bologna, ser. 7a I, 1913 (cyt. wedlug [76]).
W. G. Cady, Piezoelectricity, McGraw-Hill, New York 1946.
E. Cartan, Leçons sur la géometrie des espaces de Riemann, Gauthier- Villars, Paryz 1928. (Tlumaczenie ros. ONTI, Moskwa 1936).
P. Chalmor, Tieorja miery, Izd. Inostr. Lit., Moskwa 1951.
T. Cholewicki, Zastosowania macierzy w elektrotechnice, PWN, Warszawa 1952.
L. B. Christoffel, Über die Fortpflanzung von Stössen durch elastische feste. Körper, Ann. d. Math., t. 8, 1877, str. 193.
R. V. and McGraw-Hill, New York 1948. Churchill, Introduction to Complex Variable Applications,
A.J. Mc. Connell, Applications of the Blackie-Sons, Londyn 1947. Absolute Differential Calculus,
M. Denis-Papin-A. appliqué, Paryz 1953. Kaufmann, Cours de calcul tensoriet
P. A. M. Dirac, Homogeneous Variables in Classical Dynamics, Proc. Cambr. Phil. Soc., t. 29, 1933, str. 389.
J. Dubnow, Osnowy wiektornowo isczislenja, t. 2, Moskwa 1952.
A. Duschek - A. Hochrainer, Grundzüge der Tensorrechnung in analitischer Darstellung, Springer, t. 1, Wieden 1948, t. 2, 1950.
A. Einstein, Die Barth, Grundlagen der allgemeinen Relativitätstheorie, Lipsk 1916.
C. L. Fortescue, Method of Symmetrical Co-ordinates Applied the Solution of Polyphase Networks, Trans. Amer. to Inst. of Elect. Eng., t. 37, cz. 2, 1918.
P. Frank - R. Mises, Die Differential und Integralgleichungen der Mechanik und Physik, Vieweg, Brunszwik 1930.
Frazer-Duncan -Collar, Elementary Matrices, Cambridge Univ. Press, 1938.
J. Frenkel, Lehrbuch der Elektrodynamik, Springer, Berlin 1928.
B. G. Galerkin, Obszczeje reszenje urawnienja tieorji uprugosti, Wiestnik miech. i prikt. mat., t. 2, Leningrad 1931, str. 3.
B. N.Gorbunow - J. Krotw, Osnowy rasczeta prostran-stwiennych ram, ONTI, Moskwa 1936.
B. N. Gorbunow - A. Strielbickaja, Tieorja ram iz ton-kostiennych stierzniej, OGIZ, Moskwa 1948.
F.R. Gautmachier - M.G. Kriejn, Oscillacionnyje matricy i matyje kolebanja miechaniczeskich sistiem, Moskwa-Leningrad 1941.
J. Goldienblat, Wwiedienje w tieorju potzuczesti stroitielnych m.a-
tieriatow, Gosizdat, Moskwa 1952.
W. A. Goworkow, Elektriczeskije i magnitnyje pola, Swjazizdat,
Moskwa 1951.
a] A. Grzedzielski, Zarys ogólnej teorii sprężystości, Spraw. Inst.
Techn. Lot. 1 (1938).
M. G. Grassmann, Die Ausdehnungslehre, Berlin 1862.
L. N. Gruzow, K statje Maksimowicza, Elektriczestwo (12) 1952, str. 82.
A. Haas, Vektoranalisis, Gruyter, Berlin 1929.
L. Infeld, Elektrodynamika teoretyczna, PWN, Warszawa 1953 (skrypt).
D. Iwanienko - A. Sokolo w, Klassiczeskaja tieorja pola, Gosizdat tiechn.-tieor. lit., Moskwa 1951.
G. Juvert, Introduction au calcul tensoriel, Blanchard, Paryz 1922.
W. G. Kagan, Osnowy tieorji powierchnostiej w tienzornom iztozenji, Gostiechizdat, t. 1, Moskwa 1947.
R. Kirchh off, Vorlesungen über mathematicsche Physik, Elektrizität
und Magnetismus, M. Planck, Berlin 1891.
E. Karaśkiewicz, Zarys teorii wektorów i tensorów, PWN, Poznań 1953 (skrypt).
P. Kotielnikow - W. A. Fok, Niekotoryje primienienja idiei neewklidowoj gieomietrji Lobaczewskowo w miechanikie i fizikie, Gostiechizdat, Moskwa-Leningrad 1950.
N. E. Koczin, Wiektornoje isczislenje i naczala tienzornowo isczislenja,
Izdat. A. N. SSSR, Moskwa 1951.
W. Koltonski - I. Malecki, La méthode ultrasonore pour les récherches des couches géologiques, Bull. de l'Acad. Pol. des Sc. kl. IV. t. 1, 3 (1953).
G. Kron, Tensor Analysis for Electrical Engineers, J. Wiley, New York 1942.
G. Kron, Tensor Analysis of Networks, J. Wiley, New York 1949.
G. Kron, The Application of Tensors to the Analysis of Rotating Electrical
Machinery, Gen. Electr. Rev., kwiecień 1935.
I. L, Kronecker, Vorlesungen über die Theorie der. einfachen und
der vielfachen Integrale, Teubner, Lipsk 1894.
J. A. Krutko w, Tienzor funkcij napriazenij, Izdat. A. N. SSSR,
Moskwa 1949.
R. Courant - D. Hilbert, Mietody matiematiczeskoj fiziki, Gos-
tiechizdat, Moskwa 1949.
D. I. Kutilin, Tieorja koniecznych dieformacij, Gostiechizdat, Mo-
skwa 1947.
M. Landolt - E. Thom a S, Grandeur, mesure et unité, Paryz 1947.
s. G. Lechnic ki, Tieorja uprugosti anizotropnowo tieta, Gosizdat tiechn.-tieor. lit., Moskwa 1950.
J. Litwiniszyn, Uogólnienie równan hydromechaniki, Prace mat.- fiz. t. 48 (1952).
T. Levi-Civita, Blackie-Sons, absolute Differential Calculus (Calculus of The Tensor), Londyn 1947.
H.A. Lorentz, Das Relativitätsprinzip, Berlin 1914.
N. G. Maksimowicz, K tieorj prieobrazowanja schiem G. Krona, Elektriczestwo 11 (1952), str. 56.
I. Malecki, Interpretacja fizyczna analogii elektromechanicznych, Przegląd Elektr., 1 (1952), str. 3.
I. Malecki, Rozszerzenie poprawionego systemu analogii na ośrodki ciągle izotropowe, Arch. Elektr. 1 (1953).
J. Malecki, Akustyka filmowa i radiowa, PWT, Warszawa 1950.
I. Malecki, Teoria ciśnienia promieniowania fal ultradźwiękowych. Mat. I Konf. Ultradzw., PWN, Warszawa 1953 (w druku).
G. Marx, Das elektromagnetische Feld in bewegten anizotropen Medien, Acta Phys. Acad. Sci. Hung., t. 3, 2 (1953), str. 75.
W.P. Mason, First. and Second Order. Equations for Piezoelectric Crystals Expressed in Tensor Form, Bell System Techn. Journ., t. 26, 1947, str. 80.
A. D. Michal, Matrix and Tensor Calculus, J. Wiley, New York 1948.
H. Minkowski, Raum und Zeit, Getynga 1909.
A. Mostowski - M. Stark, Algebra wyższa, CZ. 1, P.T.M., Warszawa 1953.
O. Nikodym, Teoria tensorów fizyki matematycznej, Kasa im. Mianowskiego, Warszawa wraz z zastosowaniem do geometrii 1938.
L. A. Pipes, Steady-state Analysis of Multiconductor Transmission Lines, Journ. of Appl. Physics, 11 (1942).
H. Poincaré, Leçons sur la théorie de l'élasticité, Carré, Paryz 1829.
W. Pogorzelski, Analiza matematyczna, t. 3, Czytelnik, Warszawa 1949.
P. K. Raszewski, Rimanowa gieometrija Gos-izdat tiechn.-tieor. lit., tienzornyj analiz, Moskwa 1953.
G. Rieci - T. Civia, Méthodes de calcul differeritial absolu et leur application, Math. Ann., t. 54, 1901, str. 195.
W. Rubinowicz, Wektory L tensory, Warszawa 1950.
J. A. Schouten, Tensor Analysis for Physicists, Clarendon, Oksford 1951.
I. S. Sokolnikoff, Tensor Analysis, J. Wiley, New York 1951.
P. A. Szirokow, Tienzornyje isczislenja, Moskwa-Leningrad 1934.
S. A. Stigant, Modern Electrical Engineering Mathematics, Hutchinson, Londyn 1947.
S. Timoshenko, Theory of Elasticity, McGraw-Hill, New York 1936.
N. A. Urmajew, Elemienty fotogrammietrji, Geodiezizdot, Moskwa 1941.
W. Voigt, Lehrbuch der Kristallphysik, Getynga 1910.
W. Voigt, Die fundamentalen physikalischen Eigenschaften der Kristalle, Teubner, Lipsk 1898.
H. Weyl, Raum, Zeit und Materie, Springer, Berlin 1921.
E. W. Zieliach, Osnowy schiem, obszczej tieorji liniejnych elektriczeskich, Izwiest. A. N. SSSR 1951.