Stan Naprężenia i Przemieszczenia w Grubej Płycie Kołowej Wywołany Działaniem Nieustalonego Pola Temperatury
We require that all the boundary conditions in the planes z = ± h be satisfied in an accurate manner, and the mechanical conditions on the surface r = b in an integral manner.
To determine the stress and displacement components the familiar method of potential of thermoelastic displacement is used. In order to satisfy the boundary conditions, Love's function is introduced. Besides the above, the limit cases for b -> ∞ are considered, and also the passage to the limit for the case of sudden heating. In the particular case of steady-state, it is found that the results are in agreement with those of Ref. [6].
References
J. N. Goodier, On the Integration of the Thermo-Elastic Equations, Phil. Mag., Vol. 23, 157 (1937).
M. T. Huber, Teoria sprężystości, t. 2, PWN, Warszawa 1955.
A. E. Love, A Treatise on the Mathematical Theory of Elasticity, Londyn 1927.
A. Nádái, Elastische Platten, Berlin 1925.
W. Nowacki, The State of Stress in c Thick Circular Plate Due to a Temperature Field, Bull. Acad. Polon. Sci., Cl. IV, 4, 1957.
W. Nowacki, Stan naprężenia w grubej płycie kotłowej, wywołany działaniem pola temperatury, Arch. Inzyn. Ladow., 1 (1958).
E. Melan, H. Parkus, Wärmespannungen, Wieden 1953.
E. Melan, Spannungen infolge nicht stationärer Temperaturfelder, Öster. Ing.-Arch., 2-3, 9 (1955).
C. J. Tranter, Integral Transforms in Mathematical Physics, Londyn.
A. Timpe, Achsensymetrische Deformation von Umdrehungskörpern, ZAMM, Vol., 1924.