Engineering Transactions, 9, 3, pp. 309-362, 1961

### O Belce Sprężonej w Fazie Odkształceń Sprężysto-Plastycznych przed Zarysowaniem

J. Pietrzykowski
Instytut Podstawowych Problemów Techniki PAN
Poland

On the basis of the principle of plane section and assuming perfect elastic-plastic material, constant Young's modulus and relative yield points of concrete Qc and Qr equations are obtained for the determination of the stress distribution a in a bent prestressed clement of rectangular cross-section for classified plasticity cases, Table 2. The range of appearance of each particular elastic-plastic state in function of the resultant axial force and bending moment is represented in Fig. 16a. For each particular state the limit curves are determined graphically and mathematically by considering the limit stress distributions at the beginning of the plastic state in extreme fibres. For example, the diagram B, C, D, A', B', B in Fig. 16b shows the plasticity (DA’) of the tension zone with the beginning of plasticity of compression zone (BC = Qc). The other limit diagrams for point C may C be obtained by turning of CD line round point C. Limit diagrams for points A', C', A may be found in the same manner.
These curves are denoted in the diagrams by c, a, b and c', a', b'. As an example, the equations of the curves c, a' are given. They are composed of two branches: rectilinear and parabolic intersecting at the characteristic point (Fig. 16a). The coordinates of this point represent the magnitude of the axial force and moment, corresponding to the beginning of the plastic state in the cross-section in compressed and stretched fibres simultaneously. The straight segments of the limit curves a, a', c, c' bound the region (Fig. 16a) where the value of the axial force and moment do not pro- duce stresses exceeding the elastic range in the profile. The region bounded with the curves a', c for n < (Qc-Qr)/2 is the plasticity region in the stretched zone and for n> (Qc-Qr)/2 it represents the plasticity region in the compressed zone. The region above the curvilinear segments a' and c, bounded by the curve p represents the values of n, m producing plasticity on both sides of the profile. In the quadrant II and III analogous regions, for a cantilever beam for instance, are determined by the limit curves c', a. The curve p illustrates the theoretical state of full plasticity in the entire cross-section. Considering the general case of load by an axial force and moment and assuming the continuity of the body, the limit state is considered to be that of crack formation or crushing. Assuming the coefficient of filling up of the stress solid corresponding to the limit state in the cross-section to be a 0.7 the range of validity is determined for all the elastic-plastic states. On the diagram it is determined by dashed line constituting the envelope of the curves pa, Pc, Pa's Pe determined for each state of plasticity separately. Zones of admissible plasticity before cracking and crushing are marked by oblique shading (Fig. 16a). The safe region of the validity range depending on the way of leading may be bounded either by the curve g (parallel to pa = 0.7 - oblique shaded) or the curve ω (obtained by multiplying the ordinates Da by a constant safety factor), Fig. 24. If the element is loaded by a variable moment and axial force, it is more convenient to take the curve g. The principles of choosing the safety factors are given as well as directions for the design of a profile admitting certain elastic-plastic states, by means of the system of equations of the curve Pa in the four component ranges. This enables the determination of the best dimensions of the cross-section and the prestressing parameters and the choice of the path of the cable taking inelastic states into consideration. In conclusion, equations are given enabling us to determine the plasticity regions along the beam and the computation of the values of the rotation angles of the end section in the elastic-plastic state.

Full Text: PDF

#### References

A. L. L. BAKER, A Plastic Theory of Design for Ordinary Reinforced and Prestressed Concrete

Including Moment Re-distribution in Continuous Members, Mag. Concr. Research, No 2, 1949, 57.

A. L. L. BAKER, Recent Research in Reinforced Concrete and its Application to Design, Structural Paper No 26, J. Inst. Civil Engin. vol. 35-36, London 1951.

A. L. L. BAKER, The Ultimate-Load Theory Applied to the Design of Reinforced, Prestressed Concrete Frames, London 1956.

A. L. L. BAKER-LEE, Limit Analysis and Design, J. Amer. Concrete Inst., 4, 1954.

[in Russian]

B. BUKOWSKI, Morfologia rys w konstrukcjach żelbetowych w betonowych, Arch. Inzyn. Ladow.,

, 1957.

L. COLLATZ, Numerische Behandlungen von Dieferentialgleichungen, Berlin 1955.

[in Russian]

F. DISCHINGER, Elastische und plastische Verformung der Eisenbetontragwerke, Bauing., 5/6, 21/22, 31/32, 47/48 (1939).

C. EIMER, Elementy ściskane wstępnie sprężone, Inzyn. Budown. 6, 1951.

C. EIMER, Podstawy teorii pełzania ustrojów hiperstatycznych wstępnie sprężonych, Rozpr. Inzyn. 3, 5 (1957).

R. H. EVANS, E. W. BENNETT, Prestressed Concrete Theory and Design, London 1958.

E. FREYSSINET, Exposé dénsemble de l'idée de précontraint, Annales, ITBTP No 77, 6 (1949).

[in Russian]

[in Russian]

[in Russian]

Y. GUYON, Etude expérimentale de poutres continues en beton précontraint, Travaux 1953, Avril, Mai, Juin, Juillet.

Y. GUYON, Etude sur les poutres continues et sur certains systemes hyperstatiques en beton récontraint, I. T. B. T.P. Circ. J. No 8, Paris 1945.

Y. GUYON, Note sur les traces de cables concordants dans une construction hyperstatique

précontrainte, Gandawa 1951.

Y. GUYON, Béton précontraint, Étude theoretique et experimentale, Paris 1951, tome II, Constructions hyperstatiques, Paris 1958.

W. HERBERG, Spannbetonbau, Leipzig 1957.

A. W. HILL, Hauptbericht über den ersten Internationalen Kongress in London 1953, der Internationalen Vereingung für Spannbeton.

A. W. HILL, Gospodarcze zalety betonu sprężonego, Streszczenie ref. z Kongresu w Amsterdamie 1951 (tłum. w jez. polskim).

0. HOFFMAN, G. SACHS, Wprowadzenie do teorii plastyczności, PWN Warszawa 1959.

M. T. HUBER, Teoria sprężystości, Warszawa 1954.

[in Russian]

K. JÄGER, B. G. NEAL, Die Verfahren der plastischen Berechnung biegesteifer Stahlstab-werke, Wien 1958.

K. JÄGER, Die wahrscheinlichste Momentenverteilung in Statisch unbestimmten Stahlbalken, Allgemeine Bauzeitung, No 290a, 1952.

G. Kani, Spannbeton in Entwurf und Ausführung, Stuttgart 1955.

St. KAUFMAN, J. MAMES, Uogólniony rdzeń przekroju w belce wstępnie sprężonej, Arch. Inzyn. Ladow., 3/4, 1 (1955).

St. KAUFMAN, Mosty sprężone, Warszawa 1956.

St. KAUFMAN, O racjonalnym projektowaniu sprężonych przekrojów zginanych, Inzyn. Budown., Warszawa 1956.

St. KAUFMAN, J. HOP, Studium nad racjonalnym kształtowaniem przekroju poprzecznego belki sprężonej, Arch. Inzyn. Ladow., 1, 5 (1959).

T. KLUZ, Beton kablowy. Projektowanie i wykonawstwo, Budown. Archit., Warszawa 1956.

[in Russian]

[in Russian]

D. H. LEE, Inelastic Behaviour of Reinforced Concrete Members Subjected to Short-Time Static Load, Proc. Amer. Soc. Civ. 286, 99 (1953).

F. LEONHARDT, Spannbeton für die Praxis, Berlin 1955.

F. LEVI, G. PIZETTI , Fluage, Plasticité, Précontrainte, Paris 1951.

T. Y. LIN Strength of Continuous Prestressed Concrete Beams under Static and Repeated

Loads J. Amer. Concr. Inst., 10, 1955.

J. LEMPICKI, Teoria zginania belki żelbetowej statycznie wyznaczalnej, Arch. Inzyn. Ladow.,

, 2 (1956).

G. MAGNEL, Theorie und Praxis des Spannbetons, Wiesbaden 1956.

J. MAMES, Sprężona belka ciągła. Analiza i projektowanie. Arch. Inzyn. Ladow., 4, 3 (1957).

J. MAMES, Obliczanie odgięć w belce z betonu kablowego, Inzyn. Budown., 5, 1955.

[in Russian]

[in Russian]

E. MÖRSCH, Die Ermittlung des Bruchmomentes von Spannbetonbalken, Beton u. Stahlbeton 7,

B.G. NEAL, The Plastic Methods of Structural Analysis, London 1956.

W. OLSZAK, Z teorii belek i płyt wstępnie sprężonych, Inzyn. Budown., 2, 1947.

W. OLSZAK, C. EIMER, Inne poza betonem materiały sprężone, Inzyn. Budown., 10, 1953.3g0

W. OLSZAK, Konstrukcje wstępnie sprężone, t. 1, Warszawa 1955 PWN.

W. OLSZAK, O podstawach teorii ciał elasto-plastycznych niejednorodnych, Cz. I i II, Arch.

Mech. Stos., 3, 4, 6 (1954).

W. OLSZAK, Zjawisko rys w elementach konstrukcyjnych w świetle teorii sprężystości i plastyczności, Arch. Inzyn. Ladow., 6 (1958).

W. OLSZAK, S. KAJFASZ, J. PIETRZYKOWSKI, O nowej metodzie badań wytrzymałości materiałów kruchych na rozciąganie (Teoria tarczy kołowej w zastosowaniu do badan laboratoryjnych),

Inzyn. Budown., 9, 1954.

A. PHILLIPS, Introduction to plasticity, New York 1956.

J. PIETRZYKOWSKI, W poszukiwaniu najwłaściwszej metody projektowania mieszanki betonowej, Inzyn. Budown., 12, 1955; 1, 1956.

W. PRAGER, Probleme der Plastizitätstheorie, Basel 1955.

L. PRANDTL, Anvendungsbeispiele zu einem Henckyschen Satz über das plastische Gleich-gewicht, Zeitschr. Angew. Math. Mech., 3 (1923).

E. Reuss, Berücksichtigung der plastischen Formänderung in der Plastizitätstheorie, Zeitschr.

Angew. Math. Mech., 10 (1930).

M. R. ROS, Vorgespannter Beton, EMPA-Bericht No 155, Zürich 1946.

M. R. ROS, A. SARRASIN, Die materialtechnischen Grundlagen und Probleme des Eisenbetons im Hinblick auf die zukünfrige Gestaltung der Stahlbeton Bauveise, EMPA-Bericht No 162, Zürich 1950.

H. RUSCH, Der Einfluss des Sicherheitsbegriffs auf die techn. Regeln für vorgespannten Beton, Schweiz. Archiv Angew. Wissenschaft und Technik, Heft 3, S. 85, Zürich 1954.

H. RÜSCH, Bruchlast und Bruchsicherheitsnachweis bei Biegungs-beanspruchung von Stahl- be ton unter besonderer Berücksichtigung der Vorspannung, Beton u. Stahlbetonbau, Heft 9; S, 215, 196.

[in Russian]

F. SCHLEICHER, Der Spannungszustand an der Fliessgranze, Zeitsch. Angew. Math. Mech.,

(1926).

W. W. SOKOŁOWSKI, Teoria plastyczności, Warszawa 1957.

WI. STAROSOLSKI, Projektowanie sprężonych przekrojów zginanych z uwzględnieniem wszystkich programowych stanów obciążenia belki; Arch. Inzyn. Ladow., 4, 1958.

L. STABILINI, Die Plastizität und der Bauingeneur, Bauing. 6, 1960.

Arvo YLINEN, A Method of Determining the Buckling Stress and the Required-Cross-Sectional Area for Centrally Loaded Straight Columns in Elastic and Inelastic Range, Zürich 1956.

Arvo YLINEN, Die Knickfestigkeit eines zentrisch gedrückten Stabes im elastischen und une- lastischen Bereich, Rozpr. doktorska, Helsinki 1938.

W. WIERZBICKI, W sprawie bezpieczeństwa belki zginanej, Przegląd Techn., 12/13, 1939.

W. ZERNA, Spannbeton, Düsseldorf 1953.

[in Russian]

Hauptbericht über den dritten Kongress des Internationalen Spannbeton-Verbands (F.I. P),

Berlin 1958.