Engineering Transactions, 15, 2, pp. 349-358, 1967

O Liniowej Teorii Powłok o Malej Wyniosłości

W. Pietraszkiewicz
Zakład Dynamiki Maszyn Instytutu Maszyn Przepływowych PAN
Poland

This paper presents an accurate linear theory of shallow shells, based on the conceptions of Green and Zerna [1]. All the vector relations are expressed in consistent manner using the basic vectors of the plane projection of the shell and taking into account the geometrical and physical assumptions concerning the shallowness of the shell. The obtained fundamental equations are solved in displacements, in stresses functions and by a mixed method. With the additional assumption of small variability of curvature, each of the three methods reduces to the solution of the same complex differential equation of the fourth order the difference being that of the particular integral.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

A. E. GREEN, W. ZERNA, Theoretical Elasticity, Oxford 1954.

P. M. NAGHDI, Foundations of Elastic Shell Theory, in „,Progress in Solid Mechanics", vol. 4, North-Holland, 1963.

[in Russian]

H. DUDDECK, Das Randstörungsproblem der technischen Biegetheorie dinner Schalen in drei korrespondierenden Darstellungen, Öster. Ing. Arch., 1, 17 (1962).

F.G. KOLLMAN, Eine Ableitung der Kompatibilitätsbedingungen in der linearen Schalen-

theorie mit Hilfe des Riemannschen Krümmungstensors, Ing.-Arch., 1, 35 (1966).

, A. I. LURIE, Problems of Continuum Mechanics, p. 267 (English Edition), Soc. Ind. Appl. Math., Philadelphia, Pa., 1961.

W. PIETRASZKIEWICZ, Niektóre zagadnienia statyki powłok obrotowych o malej wyniosłości, Praca Doktorska, Politechnika Gdańska, Gdańsk 1966.

[in Russian]

W. PIETRASZKIEWICZ, Multivaluedness of solutions of shallow shells, Arch. Mech. Stos., 5, 19 (1967).

W. PIETRASZKIEWICZ, On a solving equation for shallow shells, Bull. Acad. Polon. Sci., Série Sci. Tech., 5, 15 (1967).