Engineering Transactions, 23, 3, pp. 393-421, 1975

Extremum and Variational Principles in Plasticity

H. Lippmann
Karlsruhe
Germany

Extrema of functions (functionals) W are for numerical reasons frequently expressed in the weaker variational form dW = 0. The relationship between both is discussed. In most theories W denotes somewhat like work, and dW = 0 the principle of virtual work. In the Sec. 2 the variational and extremum principles for rigid plastic materials are considered. The classical dual Harr-von Karman-Sadowski-Phillips-Hill upper and lower bound principles are given in general form which is not restricted to specific boundary conditions, or to incompressibility, rate-independence, homogenity, or istotropy. They have become one of the strongest tools for applying theory to practical problems. This is illustrated by a series of examples taken from structural mechanics, metal forming technology and soil mechanics to show also some recently studies features concerning surface fraction, action of volume forces, and volume compression, or extension, respectively. The Sec. 3 concerns the static problems for elastic-plastic material. Starting from the Cotterill-Castigliano principles for elasticity, Prager, Hodge, Greenberg and Bauer developed similar principles for perfectly-plastic or strain-hardening materials. There are, however, only few numerical applications. Recently it has even been shown that utmost caution is necessary to avoid systematic errors. In the Sec. 4 the rate-dependent of dynamic plasticity is discussed. Besides general principles of mechanics like Hamilton’s principle there are a few specific ones partly related to the theorem of work and energy which allow to estimate the magnitude of total deformation, of other quantities. The Sec. 5 is devoted to some generalizations and applications of principles discusses. As in elasticity, attempts can be made to apply directly the virtual work principle dW = 0 in order to obtain pointwise information on the unknown solution looked for. Also more general materials may be considered like those having a non-associated flow rule. Most general principles are, however, closely connected to the method of weighted residual only.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

H. LIPPMANN, Extremum and Variational Principles in Mechanics, Udine: CISM Courses and Lectures No. 54 (1970), Wien-New York, Springer, 1972.

D. RADENKOVIC and Q. S. NGUYEN, Duality of Limit Theorems for Structures with Standard Rigid-Plastic Behaviour, Lab. Méc. Solides, Paris, École Polytechnique, 1972.

M. SAYIR und H. ZIEGLER, Der Verträglichkeitssatz der Plastizitätstheorie und seine Anwendung auf räumlich unstetige Felder, Z. Angew. Math. Phys., 20 (1969), 78 - 93.

H. LIPPMANN, K. ANDRESEN, A. BEHRENS und D. BESDO, Grundlagen der Umformtechnik, Stahl und Eisen, 87 (1967), 389 - 393, 464 - 466 und 672 - 678.

I. F. COLLINS, The Upper Bound Theorem for Rigid|Plastic Solids Generalized to Include Coulomb Friction, J. Mech. Phys. Solids, 17 (1969), 323 - 338.

W. T. KOITER, General Theorems for Elastic-Plastic Solids, Progress in Solid Mech. (I. N. Sneddon, R. Hill eds.), 1 (1960), 167 - 221.

H. LIPPMANN, Plastomechanik der Umformung metallischer Werkstoffe, Vol. 1 - Berlin-Heidelberg-New York, Springer, 1967. Vol. 2 - under preparation.

H. SAMSON, Warmscheren von Stahl, Dissertation, Techn. Universität Clausthal, 1973.

H. ERNST and M. E. MERCHANT, Chips Formation, Friction and High Quality Machined Surfaces, in: Surface Treatment of Metals, Trans. Am. Soc. Metals, 29 (1941), 299-328.

E. H. LER and B. W. SHAFFER, The Theory of Plasticity Applied to a Problem of Machining, Trans. ASME J. Appl. Mech., 18 (1951), 405 - 413.

G.W. Rowe and P. T. SPICK, A New Approach to Determination of the Shear Plane Angle in Machining, Trans. ASME J. Engng. Ind., 89 (1967), 530-538.

W. H. FEILBACH and B. AVITZUR, Analysis of Rod Shaving and Orthogonal Cutting, Trans. ASME J. Engng. Ind., 90 (1968), 393-403.

B. ZÜNKLER, Herleitung der spezifischen Schnittkraft ks nach dem Prinzip des geringsten Zwanges, ausgehend von der Fließkwve des Werkstoffes, TZ f. prakt. Metallbearbeitung, 65 (1971), 76-79.

W. JOHNSON and H. KUDO, The Mechanics of Metal Extrusion, Manchester, University

Press, 1962.

JU. A. ALJUSIN, Analysis of Deformation Processes of Metals by Tools with Curvilinear Contours, Masinovedeije no. 5 (1965), 83-88 [in Russian].

H. LIPPMANN, Abschätzen oberer und unterer Schranken für Umformleistungen und Kräfte, besonders beim Strangpressen. Grundlagen der bildsamen Formgebung, Düsseldorf, Stahleisen, 1966, 83-98.

B. AVITZUR, Strain-Hardening and Strain-Rate Effects in Plastic Flow Through Conical Converging Dies, Trans. ASMB J. Engng. Ina., 89 (1967), 556-562.

H. C. SORTAIS and S. KOBAYASHI, An Optimum Die Profile for Axisymmetric Extrusion, Int. J. Machine Tool Design and Research, 8 (1968), 61-72.

C. T. CHEN and F.F. LING, Upper Bound Solutions to Axisymmetric Extrusion Problems, Int. J. Mech. Sci., 10 (1968), 863-880.

E. R. LAMBERT and S. KOBAYASHI, A Theory On the Mechanics of Axisymmetric Extrusion Through Conical Dies, J. Mech. Engng. Sci., 10 (1968), 367-380.

A. H. SHABAIK and E. G. THOMSEN, Comparison of Two Complete Solutions in Axisymmetric Extrusion with Experiment, Trans. ASME J. Engng, Ind., 91 (1969), 543-548.

Z. ZIMERMAN and B. AVITZUR, Metal Flow through Conical Converging Dies – A Lower Upper Bound Approach Using Generalized Boundariesof the Plastic Zone, Trans. ASME J. Engng. Ind., 92 (1970), 119-129.

H. S. MEHTA, A. H. SHABAIK and S. KOBAYASHI, Analysis of Tube Extrusion, Trans. ASME J. Engng. Ind., 92 (1970), 403-411.

T. MUROTA, T. JIMMA and K. KATO, Analysis of Axisymmetric Extrusion, Bull. ISME 13, 65, (1970), 1366-1374.

M. LUNG, Ein Verfahren zur Berechnung des Geschwindigkeits- und Spannungsfeldes bei stationären starr-plastischen Formänderungen mit fmiten Elementen, Dissertation Hannover,

Techn. Universität, 1971.

N. ARMED, Conical Flows in Metal Forming, Trans. ASME J. Basic Engng., 94 (1972), 213-222.

A. TROOST, Zur elementaren Theorie des axialsymmetrischen Vorwärtsstrangpressens; Ermitt- Jung der Umformgeometrie und des Kraftbedarfs durch Variationsrechnung, Arch. Eisenhüttenwes, 49 (1973), 315-320.

B. AVITZUR, E. D. BISHOP and W.C. HAHN jr., Impact Extrusion Upper Bound Analysis of the Early Stage, Trans. ASME J. Engng. Ind., 94 (1972), 1079-1086.

S. KOBAYASHI and E. G. THOMSEN, Approximate Solutions to a Problem of Press Forging, Trans. ASME J. Engng. Ind., 81 (1958), 217-227.

S. KOBAYASHT, R. HERZOG, J. T. LAPSLEY jr. and E. G. THOMSEN, Theory and Experiment of Press Forging Asymmetric Parts of Aluminium and Lead, Trans. ASME J. Engng. Ind., 81 (1959), 228-236.

S. KOBAYASHI and E. G. THOMSEN, Upper- and Lower-Bound Solutions to Axisymmetric Compression and Extrusion Problems, Int. J. Mech. Sci., 7 (1965), 127-143.

H. KUDO, An Upper-Bound Approach to Plane Strain Forging and Extrusion, Int. J. Mech. Sci., 1 (1960), (I) 57-83, (II) 229-252, (III) 366-368.

J.B. HADDOW and W. JOHNSON, Bounds for the Load to Compress Plastically Square Discs Between Rough Dies, Appl. Sci. Res., Sect. A, 10 (1961), 471-477.

B. AVITZUR, Forging of Hollow Disks, Israel J. Technol., 2 (1964), 295-304.

B. ZÜNKLER, Ermittlung der beim Gesenkschmieden stabförmiger Teile auftretenden Spannungen und Kräfte, Ind.-Anzeiger: Werkzeugmaschinen und Fert.-Techn., 87 (1965), 569-576.

K. KWASZCZYŃSKA and Z. MRÓZ, A Theoretical Analysis of Plastic Compression of Short Circular Cylinders, Arch. Mech. Stos., 19 (1967), 787-797.

S. K. SAMANTA, The Application of the Upper Bound Theorem to the Prediction of Indenting and Compressing Loads for Circular and Rectangular Disks, Acta Polytechn. Scandin., Mech. Engng. Ser., 38 (1968), 5-36.

J. Y. LIU, Upper Bound Solutions of Some Axisymmetric Cold Forging Problems, Trans. ASME J. Engng. Ind., 93 (1971), 1134-1144.

K. ANDRESEN, Blockstauchen zwischen ebenen parallelen Bahnen, Arch. Eisenhüttenwes., 44 (1973), 595-598.

K. ANDRESEN, Die numerische Behandlung eines Schrankenverfahrens mit Anwendung auf axialsymmetrisches Stauchen, Acta Mech., 17 (1973), 291-303.

I. Ja. TARNOVSKI, A. A, POZDEEV, V.L. KOLMOGOROV, A Variational Principle in the Theory of Metal Processing under Pressure. Theory of Rolling, Moscow, Sci. Techn. Gov. Publ. Lit. Iron and Non-Iron Metals, 1962, 57-67 [in Russian].

A. TROOST, Zur elementaren Plastizitätstheorie räumlicher Umformvorgänge, Arch. Eisen- hüttenwesen, 35 (1964), 847-853.

J. W. GREEN, L. G. M. SPARLING and J. F. WALLACE, Shear Plane Theories of Hot and Cold Flat Rolling, J. Mech. Engng. Sci., 6 (1964), 219-235.

V. MANNL und H. LIPPMANN, Elementare Theorie und Schrankenverfahren der Plastomechanik, Rev. Roum. Sci. Techn. Méc. Appl., 15 (1970), 539-553+16 (1971), 739.

H. LIPPMANN und R. KÜMMERLING, On Spread in Rollin, Mech. Res. Comm., 2 (1975), 113-118.

D. C. DRUCKER, W. PRAGER, Soil Mechanics and Plastic Analysis of Limit Design, Qu. Appl. Math., 10 (1952), 157-165.

R. T. SHIELD, On Coulomb's Law of Failure in Solids, J. Mech. Phys. Solids, 4 (1955), 10-16.

J. B. CHBATHAM, P.R. PASLAY, C. W. G. FULCHER, Analysis of the Plastic Flow of Rock under a Lubricated Punch, Trans. ASME J. Appl. Mech., 35 (1968), 87-94.

P. R. PASLAY, J. B. CHEATHAM, C. W. G. FULCHER, Plastic Flow of Rock Under a Pointed Punch in Plane Strain, Trans. ASME J. Appl. Mech., 35 (1968), 95-101.

H. LIPPMANN, Plasticity in Rock Mechanics, Int. J. Mech. Sci., 13 (1971), 291-297.

M. CAPURSO, Minimum Principle for the Incremental Solution of Elastoplastic Problems, Atti Accad. Naz. Lincei, Rend. Sci. Fis., Mat. Nat., 46 (1969), 417-425 and 552-560 [in Italian].

I. F. COLLINS, A Note on the Interpretation of Coulomb's Analysis of the Thrust on a Rough Retaining Wall in Terms of the Limit Theorems of Plasticity Theory, Géotechnique, 1973, 442-447.

J. F. ADIE and J. M. ALEXANDER, A Graphical Method of Obtaining Hodographs for Upper- -Bound Solutions to Axisymmetric Problems, Int. J. Mech. Sci., 9 (1967), 349-357.

H. GAJEWSKI, Ein Verfahren zur Konstruktion statisch zulässiger Spannungsfelder, Z. Angew. Math. Mech., 47 (1967), 19-30.

A. NAGAMATSU, T. MUROTA and T. JIMMA, On the Nonuniform Deformation of Material in Axially Symmetric Compression Caused by Friction. Part. 1. Comparison of Results Using Calculus of Variations with Experiments Concerning Compression of Cylinder. Part 2. Theoretical Analysis of Compression of Circular Cylinders, Bull. JSME, 14, 70 (1971), 331-338 and 339-347.

R. H. LANCE, On Automatic Construction of Velocity Fields in Plastic Limit Analysis, Acta Mech., 3 (1967), 22-33.

H. GAJEWSKI, Zur Lösung einer Klasse lconvexer Minimumprobleme der Plastizitätstheorie, Z. Angew. Math. Mech., 49 (1969), 83-90.

W. OLSZAK and W. URBANOWSKI, Plastic Non-Homogeneity. A Survey on Theoretical and Experimental Research. Non-Homogeneity in Elasticity and Plasticity. Sympos. Warsaw Sept. 2-9 (1958), 259-300 (1959).

P. G. HODGE jr., Numerical Applications of Minimum Principles in Plasticity, Engineering Plasticity (J. Heyman, F. Leckie eds.), Oxford Univ. Press, 1968, 237-256.

W. OLSZAK and P. PERZYNA, Extremum Theorems in the Theory of Plasticity of Non-Homo-geneous and Anisotropic Bodies, Arch. Mech. Stos., 9 (1958), 659-712.

K. W. NEALE, A General Variational Theorem for the Rate Problem in Elasto-Plasticity, Int. J. Solids Structures, 8 (1972), 865-876,

A. LANGENBACH, Variationsmethoden in der nichtlinearen Elastiziräts- und Plastizitätstheorie, Wiss. Z. Humboldt-Univ. Berlin math. -naturwiss. R. 9 (1959/60), 145-164.

R. B. STOUT and Ph. G. HODGE, Elastic|Plastic Torsion of Hollow Cylinders, Int. J. Mech. Sci., 12 (1970), 91-108.

C.H. LEE and S. KOBAYASHI, Elastoplastic Analysis of Plane-Strain and Axisymmetric Flat Punch Indentation by the Finite-Element Method, Int. J. Mech. Sci., 12 (1970), 349-370.

H. EGGERS, Die Berechnung von Kontinua aus elastisch-plastischem Material mit Verfestigung nach einer finiten Elementenmethode, Dissertation Braunschweig, Techn. Univ., 1972.

H. LIPPMANN, On the Incremental Extremum Theorems for Elastic-Plastic Media, Mech. Res. Comm., 1 (1974), 33-36.

R. H. LANCE and J. F. SOECHTING, A Displacement Bounding Principle in Finite Plasticity, Int. J. Solids Structures, 6 (1970), 1103-1118.

O. De DONATO, Some Extremum Theorems for the Elastoplastic Boundary Value Problem in the Presence of Large Displacements, Meccanica, 5 (1970), 210-218.

G. MAIER, A Minimum Principle for Incremental Elastoplasticity with Non-Associated Flow Laws, J. Mech. Phys. Solids, 18 (1970), 319-330.

P.G. HODGE jr., A Deformation Bounding Theorem for Flow Law Plasticity, Quart. Appl. Math., 24 (1966), 171-174.

J. B. MARTIN, Extended Displacement Bound Theorems for Work-Hardening Continua Subject to Impulsive Loading, Int. J. Solids Structures, 2 (1966), 9-26.

J. F. SOECHTING and R. H. LANCE, A Bounding Principle in the Theory of Work-Hardening Plasticity, Trans. ASME J. Appl. Mech., 36 (1969), 228-232.

W. JOHNSON, M. C. de MALHERBE and R. VENTER, Upper Bounds to the Load for the Plane Strain Working of Anisotropic Metals, J. Mech. Engng. Sci., 14 (1972), 297-306.

W. PRAGER, On Slow Visco-Plastic Flow, Studies in Math. and Mech.; presented to R. V. Mises. New York, Academic Press, 1954, 208-216.

J. B. HADDOW and H. LUMING, An Extension of One of the Extremum Principles for a Bingham Solid, Appl. Sci. Res., (A) 15 (1965), 81-86.

J. B. HADDOW and H. LUMING, The Application of the Extremum Principles for a Bingham Solid, Appl. Sci. Res., 16 (1966), 469-477.

F. A. LECKIB and A. R. S. PONTER, Deformation Bounds for Bodies which Creep in the Plastic Range, Trans. ASME J. Appl. Mech., 37 (1970), 426-430.

A.R. S. PONTER and F.A. LECKIE, The Application of Energy Theorems to Bodies which Creep in the Plastic Range, Trans. ASME J. Appl. Mech., 37 (1970), 753-758.

J. B. MARTIN, A Displacement Bound Principle for Inelastic Continua Subjected to Certain Classes of Dynamic Loading, Trans. ASME J. App. Mech., 32 (1965), 1-6.

V.D. TAMUZH, On a Minimum Principle in Dynamics of Rigid-Plastic Bodies, J. Appl. Math. Mech., 26 (1963), 1067-1077.

J. B. MARTIN, Extremum Principles for a Class of Dynamic Rigid-Plastic Problems, Int. J. Solids Structures, 8 (1972), 1185-1204.

D. RADENKOVIC, Théorie des charges limites: extension à la mécanique des sols, Séminaire de plasticité (Ecole Polytechnique). Paris, Publ. Scientifiques et Techniques du Ministère de l'Air, no. N. T. 116 (1961), 129-142.

J. SCHROEDER and A. N. SHERBOURNE, A General Variational Theorem in Classical Plasticity, J. Math. Phys., 46 (1967), 175-187.

D. R. BHANDARI and J. T. ODEN, A Variational Principle for Non-Linear Thermoviscoplasticity, Int. J. Non-Linear Mech., 7 (1972), 489-501. B. A. FINLAYSON and L. E. SCRIVEN, The Method of Weighted Residuals--A Review, Appl. Mech. Rev., 19 (1966), 735-748.

D. KOLAROV, Methods of Solving the Equations of the Mechanics of Deformable Media, Archiv. Mech. Stos., 16 (1964), 989-1007.

R. DALHEIMER, Beiträge zur Frage der Spannungen, Formänderungen und Temperaturen beim axialsymmetrischen Strangpressen, Ber. Inst. Umformtechnik, Univ. Stuttgart (TH) Nr 20. Essen. Girardet 1970.

E. STECK, Numerische Behandlung von Verfahren der Umformtechnik, Ber, Inst. Umform- technik, Univ. Stuttgart (TH) Nr. 22, Essen. Girardet, 1971.

G. ADLER und R. DALHEIMER, Ein numerisches Verfahrem zum Lösen von Problemen der Umformtechnik, Werkstattstechnik, 62 (1972), 194-198.

R. HILL, A General Method of Analysis for Metal-Working Processes, J. Mech. Phys. Solids, 11 (1963), 305-326.

E. STECK, Ein Verfahren zur näherungsweisen Berechnung des Spannungs- und Verformungszu-standes bei Umformvorgängen, Annals C.I.R.P., 17 (1969), 251-258.

G. CERADINI, A Maximum Principle for the Analysis of Elastic-Plastic Systems, Meccanica, 1 (1966), 77-82.

H. GAJEWSKI, Iterations- Projektions- und Projektions-Iterationsverfahren zur Berechnug viscoplastischer Strömungen, Z. Angew. Math. Mech., 50 (1970), 485-490.

M. CAPURSO, Minimum Principles in the Dynamics of Isotropic Rigid-Plastic and Rigid-Visco-plastic Continuous Media, Meccanica, 7, 92-97 (1972).

O. De DONATO, and G. MAIER, Bounds on Total Dynamic Deflections of Elastoplastic Structures Allowing for Second-Order Geometric Effects, Mach, Res. Comm., 1 (1974), 37-41.

G. MAIER, Extremum Theorems for the Analysis of Elastic Plastic Structures Containing Unstable Elements, Meccanica, 2 (1967), 235-242.

M. CAPURSO and G. MAIER, Incremental Elastoplastic Analysis and Quadratic Optimization, Meccanica, 5 (1970), 1-10.

G. MALER, Incremental Plastic Analysis in the Presence of Large Displacements and Physical Instabilizing Effects, Int. J. Solids Struct., 7 (1971), 345-372.

G.D. LAHOTI and S. KOBAYASHI, On Hill's General Method of Analysis for Metal-Working Processes, Int. J. Mech. Sci., 16 (1974), 521-540.

C. S. HARTLEY, Upper Bound Analysis of Extrusion of Axisymmetric, Piecewise Homogeneous Tubes, Int. J. Mech. Sci., 15 (1973), 651-663.

P. PERZYNA, Fundamental Problems in Viscoplasticity, Adv. Appl. Mech., no. 9, New York, Academic Press, 1966.

Z. MRÓZ, Limit Analysis of Plastic Structures Subject to Boundary Variations, Arch. Mech. Stos., 15 (1963), 63-75.

G. GRANDORI, Formulatione variazionale della condizione di plasticità per continui idealmente elastoplastici, Ist. Lombardo Sci. Lett. Rend. Cl. Sci. Mat. Nat., 90 (1956), 541-546.

D. TRIFAN, A Minimum Principle of Plasticity, Quart. Appl. Math., 13 (1955), 337-339.

D. TRIFAN, On a Complementary Energy Principle, J. Math. Mech., 6 (1957), 87-90.

L. STABILINI, Contributo allo studio dei sistemi elasto-plastici, Österr. Ing.- Archiv, 15 (1961), 214-221.

M. SAVE, Une interpretation du théorème de Colonetti, Z. angew. Math. Phys., 13 (1962), 479-499.

D. C. DRUCKER, On Uniqueness in the Theory of Plasticity, Quart. Appl. Math., 14 (1956), 35-42.

V. K. GARG, S. C. ANAND and P. G. HODGE jr., Elastic-Plastic Analysis of a Wheel Rolling on a Rigid Track, Int. J. Solids Structures, 10 (1974), 945-956.

M. DUSZEK, On Minimum Principles in Finite Plasticity, Bull. Acad. Polon. Sci., Série Sci. Techn., 21 (1973), 89-96.

Z. MRÓZ and B. RANIECKI, Variational Principles in Uncoupled Thermoplasticity, Int. J. Engng. Sci., 11 (1973), 1133-1141.

M. KLEIBER, A Three-Fields Variational Theorem for the Rate Problem of Finite Strain Elasto-Plasticity with Discontinuous Fields, Paper presented to EUROMECH 54 Colloqiuum on Finite Deformations in Plasticity, Warsaw, Sept. 30 - Oct. 3, 1974.

O. MAHRENHOLTZ and W. KLIE, Axisymmetric Plastic Deformation Using Finite Element Method, Paper presented to EUROMECH 54 Colloquium on Finite Deformations in Plasticity, Warsaw, Sept. 30 - Oct. 3, 1974.

R. de BOER, Zur Theorie viskoplastischer Stoffe, J. Appl. Math. Phys. (ZAMP), 25 (1974), 195-208.

S. I. OH and S. KOBAYASHI, An Approximate Method for a Three-Dimensional Analysis of Rolling, Int. J. Mech. Sci., 17 (1975), 293-305. A. R. S. PONTER, General Displacement and Work Bounds For Dynamically Loaded Bodies, J. Mech. Phys. Solids, 23 (1975), 151-163. A. R. S. PONTER, Deformation Bounds For the Bailey-Orowan Theory of Creep, Trans. ASME J. Appl. Mech., 42 (1975), 619-624.

P. S. SYMONDS, On an Extremum Principle For Mode From Solutions in Plastic Structural Dynamics, Trans. ASME J. Appl., 42 (1975), 630-640.