Choice of Collocation Points for Axisymmetric Nonlinear Two-Point Boundary Value Problems In Statics Of Shallow Spherical Shells
References
В. А. FINLAYSON, Тhе method of weighted residuals and variational principles, Academic Press, N.Y. 1972.
J. VILLADSEN аnd L. МICНELSON, Solution of differential equation models bу polynomial appгoximation, Prentice Hall 1978.
С. DЕВOOR and В. SWARTZ, Collocation at Gaussian points, SIAM J. Numerical Analysis, 10, 582-606, 1973.
R. D. RussвL and J. М. VARAН, А comparison of global methods for-linear two-point boundary value problems, Maths Comput, 29, 1007-1019, 1975.
С. LANCZOS, Trigonometric interpolation of empirical and analytical functions, J. Maths. Phys., 17, 123, 199, 1938.
Y. NATH and R.S. ALWAR, Noпlineaг static and dynamic response of spherical shells, Int. J, Nonlin. Mech., 13, 157-170, 1978.
О. С. ZIENKIEWICZ, Тhе finite element method in engineering science, McGraw Hill, London 1971.
В. BUDIANSKY, Buckling of clamped shallow spherical shells, I, Proc. IUTAM SYMP. On Theory of Thin Elastic Shells, Delft, the Netherlands 64-94, 1959.
S. Р. TIMOSHENKO and S. WOINOWSKY-KRIEGER, Theory of plates and shells, McGгaw Нill, N.Y. 1959.
R. S. ALWAR апd Y. NATH, Application of Chebyshev polynomials to the non-linear analysis of circular plates, Int. J. Mech. Sci., 18, 589-595, 1976.
Н. KANEMATSU апd W. А. NASH, Random vibration of thin elastic plates and shallow spherical shells AFOSR, Scientific Raport AFCSRTR-71-1860 Univ. of Mass, 1971.