**69**, 4, pp. 373–401, 2021

**10.24423/EngTrans.1370.20211215**

### Radiative MHD Walter’s Liquid-B Flow Past a Semi-Infinite Vertical Plate in the Presence of Viscous Dissipation with a Heat Source

*k*

_{1}= 0. It is worth mentioning that the obtained results coincide with the previously published results.

**Keywords**: radiation; magnetohydrodynamics (MHD); viscous dissipation; porous medium; heat source and viscoelastic fluid; vertical plate

**Full Text:**PDF

#### References

Soundalgekar V.M., Pop I., Viscous dissipation effects on unsteady free convective flow past an infinite vertical porous plate with variable suction, International Journal of Heat and Mass Transfer, 17(1): 85–92, 1974, doi: 10.1016/0017-9310(74)90041-6.

Singh K.R., Cowling T.G., Thermal convection in magnetohydrodynamics: I. Boundary layer flow up a hot vertical plate, The Quarterly Journal of Mechanics and Applied Mathematics, 16(1): 1–15, 1963, doi: 10.1093/qjmam/16.1.1.

Sacheti N.C., Chandran P., Singh A.K., An exact solution for unsteady magnetohydrodynamic free convective flow with constant heat flux, International Communications in Heat and Mass Transfer, 21(1): 131–142, 1994, doi: 10.1016/0735-1933(94)90090-6.

Sattar Md.A., Alam Md.M., MHD free convective heat and mass transfer flow with Hall current and constant heat flux through a porous medium, Indian Journal of Pure and Applied Mathematics, 26(2): 157–167, 1995.

Sahoo P.K., Datta N., Biswal S., Magnetohydrodynamic unsteady free convective flow past an infinite vertical plate with constant suction and heat sink, Indian Journal of Pure and Applied Mathematics, 34(1): 145–155, 2003.

Maqbool K., Mann A.B., Tiwana M.H., Unsteady MHD convective flow of a Jeffery fluid embedded in a porous medium with ramped wall velocity and temperature, Alexandria Engineering Journal, 57(2): 1071–1078, 2018, doi: 10.1016/j.aej.2017.02.012.

Hamza M.M., Free convection slip flow of an exothermic fluid in a convectively heated vertical channel, Ain Shams Engineering Journal, 9(4): 1313–1323, 2018, doi: 10.1016/j.asej.2016.08.011.

Un Nisa Z., Hajizadeh A., Nazar M., Free convection flow of nanofluid over infinite vertical plate with damped thermal flux, Chinese Journal of Physics, 59: 175–188, 2019, doi: 10.1016/j.cjph.2019.02.029.

Hajizadeh A., Shah N.A., Shah S.I.S., Animasaun I.L., Gorji M.-R., Alarifi I.M., Free convection flow of nanofluids between two vertical plates with damped thermal flux, Journal of Molecular Liquids, 289: Article ID 110964, 2019, doi: 10.1016/j.molliq.2019.110964.

Shah N., Zafar A.A., Fetecau C., Free convection flows over a vertical plate that applies shear stress to a fractional viscous fluid, Alexandria Engineering Journal, 57(4): 2529–2540, 2018, doi: 10.1016/j.aej.2017.08.023.

Gholinia M., Hoseini M.E., Gholinia S., A numerical investigation of free convection MHD flow of Walters-B nanofluid over an inclined stretching sheet under the impact of Joule heating, Thermal Science and Engineering Progress, 11: 272–282, 2019, doi: 10.1016/j.tsep.2019.04.006.

Wang Z.H., Zhou Z.K., Eternal natural convection heat transfer of liquid metal under the influence of the magnetic field, International Journal of Heat and Mass Transfer, 134: 175–184, 2019, doi: 10.1016/j.ijheatmasstransfer.2018.12.173.

Patel H.R., Effects of cross diffusion and heat generation on mixed convective MHD flow of Casson fluid through porous medium with non-linear thermal radiation, Heliyon, 5(4): 1–26, 2019, doi: 10.1016/j.heliyon.2019.e01555.

Chamkha A.J., Thermal radiation and buoyancy effects on hydromagnetic flow over an accelerating permeable surface with heat source or sink, International Journal of Engineering Science, 38(15): 1699–1712, 2000, doi: 10.1016/S0020-7225(99)00134-2.

Satya Narayana P.V., Venkateswarlu B., Venkataramana S., Thermal radiation and heat source effects on a MHD nanofluid past a vertical plate in a rotating system with porous medium, Heat Transfer Asian Research, 44(1): 1–19, 2015, doi: 10.1002/htj.21101.

Cortell R., MHD (magneto-hydrodynamic) flow and radiative nonlinear heat transfer of a viscoelastic fluid over a stretching sheet with heat generation/absorption, Energy, 74: 896–905, 2014, doi: 10.1016/j.energy.2014.07.069.

Amir Hamzah N.S., Kandasamy R., Muhammad R., Thermal radiation energy on squeezed MHD flow of Cu, Al2O3 and CNTs-nanofluid over a sensor surface, Alexandria Engineering Journal, 55(3): 2405–2421, 2016, doi: 10.1016/j.aej.2016.04.019

Fagbade A.I., Falodun B.O., Omowaye A.J., MHD natural convection flow of viscoelastic fluid over an accelerating permeable surface with thermal radiation and heat source or sink: spectral homotopy analysis approach, Ain Shams Engineering Journal, 9(4): 1029–1041, 2018, doi: 10.1016/j.asej.2016.04.021.

Satya Narayana P.V., Akshit S.M., Ghori J.P., Venkateswarlu B., Thermal radiation effects on an unsteady MHD nanofluid flow over a stretching sheet with non-uniform heat source/sink, Journal of Nanofluids, 6(5): 899–907, 2017, doi: 10.1166/jon.2017.1374.

Harish Babu D., Ajmath K.A., Venkateswarlu B., Satya Narayana P.V., Thermal radiation and heat source effects on MHD non-Newtonian nanofluid flow over a stretching sheet, Journal of Nanofluids, 8(5): 1085–1092, 2018, doi: 10.1166/jon.2019.1666.

Makanda G., Makinde O.D., Sibanda P., Natural convection of viscoelastic fluid from a cone embedded in a porous medium with viscous dissipation, Mathematical Problems in Engineering, 2013: Article ID 934712, 11 pages, 2013, doi: 10.1155/2013/934712.

Venkateswarlu B., Satya Narayana P.V., Influence of variable thermal conductivity on MHD Casson fluid flow over a stretching sheet with viscous dissipation, Soret and Dufour effects, Frontiers in Heat and Mass Transfer, 7(1): 1–9, 2016, doi: 10.5098/hmt.7.16.

Hayat T., Ijaz Khan M., Waqas M., Yasmeen T., Alsaedi A., Viscous dissipation effect in flow of magnetonanofluid with variable properties, Journal of Molecular Liquids, 222: 47–54, 2016, doi: 10.1016/j.molliq.2016.06.096.

Nayak M.K., MHD 3D flow and heat transfer analysis of nanofluid by shrinking surface inspired by thermal radiation and viscous dissipation, International Journal of Mechanical Sciences, 124–125: 185–193, 2017, doi: 10.1016/j.ijmecsci.2017.03.014.

Khan M.I., Hayat T., Khan M.I., Alsaedi A., A modified homogeneous-heterogeneous reactions for MHD stagnation flow with viscous dissipation and Joule heating, International Journal of Heat and Mass Transfer, 113: 310–317, 2017, doi: 10.1016/j.ijheatmasstransfer.2017.05.082.

Hayat T., Khan M.I., Alsaedi A., Khan M.I., Joule heating and viscous dissipation in flow of nanomaterial by a rotating disk, International Communications in Heat and Mass Transfer, 89: 190–197, 2017, doi: 10.1016/j.icheatmasstransfer.2017.10.017.

Ramesh K., Effects of viscous dissipation and Joule heating on the Couette and Poiseuille flows of a Jeffery fluid with slip boundary conditions, Propulsion and Power Research, 7(4): 329–341, 2018, doi: 10.1016/j.jppr.2018.11.008

Muhammad T., Hayat T., Shehzad S.A., Alsaedi A., Viscous dissipation and Joule heating effects in MHD 3D flow with heat and mass fluxes, Results in Physics, 8: 365–371, 2018, doi: 10.1016/j.rinp.2017.12.047.

Venkateswarlu B., Satya Narayana P.V., Tarakaramu N., Melting and viscous dissipation effects on MHD flow over a moving surface with constant heat source, Transactions of A. Razmadze Mathematical Institute, 172(3B): 619–630, 2018, doi: 10.1016/j.trmi.2018.03.007.

Ezzat M.A., Abd-Elaal M.Z., Free convection effects on a viscoelastic boundary layer flow with one relaxation time through a porous medium, Journal of the Franklin Institute, 334(4): 685–706, 1997, doi: 10.1016/S0016-0032(96)00095-6.

Prasad K.V., Pal D., Umesh V., Prasanna Rao N.S., The effect of variable viscosity on MHD viscoelastic fluid flow and heat transfer over a stretching sheet, Communication in Non-Linear Science and Numerical Simulation, 15(2): 331–344, 2010, doi: 10.1016/j.cnsns.2009.04.003.

Goyal M., Bhargava R., Numerical solution of MHD viscoelastic nanofluid flow over a stretching sheet with partial slip and heat source/sink, ISRN Nanotechnology, 2013: Article ID 931021, 11 pages, 2013, doi: 10.1155/2013/931021.

Rashidi M.M., Ali M., Freidoonimehr N., Rostami B., Hossain M.A., Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation, Advances in Mechanical Engineering, 6, 2014, doi:10.1155/2014/735939..

Venkateswarlu B., Satya Narayana P.V., MHD visco-elastic fluid flow over a continuously moving vertical surface with chemical reaction, Walailak Journal of Science and Technology, 12(9): 775–783, 2015.

Li J., Zheng L., Liu L., MHD viscoelastic flow and heat transfer over a vertical stretching sheet with Cattaneo-Christov heat flux effects, Journal of Molecular Liquids, 221: 19–25, 2016, doi: 10.1016/j.molliq.2016.05.051

Bilal S., Malik M.Y., Awais M., Khalil-ur-Rehman, Hussain A., Khan I., Numerical investigation on 2D viscoelastic fluid due to exponentially stretching surface with magnetic effects: an application of non-Fourier flux theory, Natural Computing and Applications, 30(9): 2749–2758, 2018, doi: 10.1007/s00521-016-2832-4.

Satya Narayana P.V., Tarakaramu N., Makinde O.D., Venkateswarlu B., Sarojamma G., MHD stagnation point flow of viscoelastic nanofluid past a convectively heated stretching surface, Defect and Diffusion Forum, 387:106–120, 2018, doi: 10.4028/www.scientific.net/DDF.387.106.

Choudhury R., Dey D., Free convective MHD flow of a non-Newtonian fluid past an infinite vertical plate with constant suction and heat sink, International Journal of Dynamics of Fluids, 8(2): 83–94, 2012.

Dessie H., Kishan N., MHD effects on heat transfer over stretching sheet embedded in porous medium with variable viscosity, viscous dissipation and heat source/sink, Engineering Physics and Mathematics. Ain Shams Engineering Journal, 5(3): 967–977, 2014, doi: 10.1016/j.asej.2014.03.008.

Besthapu P., Ul Haq R., Bandari S., Al-Mdallal Q.M., Mixed convection flow of thermally stratified MHD nanofluid over an exponentially stretching surface with viscous dissipation effect, Journal of the Taiwan Institute of Chemical Engineers, 71: 307–314, 2017, doi: 10.1016/j.jtice.2016.12.034.

DOI: 10.24423/EngTrans.1370.20211215

Copyright © 2014 by Institute of Fundamental Technological Research

Polish Academy of Sciences, Warsaw, Poland