10.24423/engtrans.812.2018
Development of a Hybrid Meta-Model for Material Selection Using Design of Experiments and EDAS Method
References
Cicek K., Celik M., Multiple attribute decision-making solution to material selection problem based on modified fuzzy axiomatic design-model selection interface algorithm, Materials & Design, 31(4): 2129–2133, 2010, doi: 10.1016/j.matdes.2009.11.016.
Jahan A., Ismail Md. Y., Mustapha F. Sapun S.M., Material selection based on ordinal data, Materials & Design, 31(7): 3180–3187, 2010, doi: 10.1016/j.matdes.2010.02.024.
Chatterjee P., Athawale V.M., Chakraborty S., Materials selection using complex proportional assessment and evaluation of mixed data methods, Materials & Design, 32(2): 851–860, 2011, doi: 10.1016/j.matdes.2010.07.010.
Athawale V.M., Kumar R., Chakraborty S., Decision making for material selection using the UTA method, The International Journal of Advanced Manufacturing Technology, 57(1): 11–22, 2011, doi: 10.1007/s00170-011-3293-7.
Huang H., Zhang L., Liu Z., Sutherland J.W., Multi-criteria decision making and uncertainty analysis for materials selection in environmentally conscious design, The International Journal of Advanced Manufacturing Technology, 52(5-8): 421–432, 2011, doi: 10.1007/s00170-010-2745-9.
Chauhan A., Vaish R., Magnetic material selection using multiple attribute decision making approach, Materials & Design, 36: 1–5, 2012, doi: 10.1016/j.matdes.2011.11.021.
Girubha R.J., Vinodh S., Application of fuzzy VIKOR and environmental impact analysis for material selection of an automotive component, Materials & Design, 37: 478–486, 2012, doi: 10.1016/j.matdes.2012.01.022.
Chatterjee P., Chakraborty S., Material selection using preferential ranking methods, Materials & Design, 35: 384–393, 2012, doi: 10.1016/j.matdes.2011.09.027.
Maity S.R., Chatterjee P., Chakraborty S., Cutting tool material selection using grey complex proportional assessment method, Materials & Design, 36: 372–378, 2012, doi: 10.1016/j.matdes.2011.11.044.
Karande P., Chakraborty S., Application of multi-objective optimization on the basis of ratio analysis (MOORA) method for materials selection, Materials & Design, 37: 317–324, 2012, doi: 10.1016/j.matdes.2012.01.013.
Liu H.C., Mao L.X., Zhang Z.Y., Li, P., Induced aggregation operators in the VIKOR method and its application in material selection, Applied Mathematical Modelling, 37(9): 6325–6338, 2013, doi: 10.1016/j.apm.2013.01.026.
Çalişkan H., Kurşuncu B., Kurbanoğlu C., Güven S.Y., Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods, Materials & Design, 45: 473–479, 2013, doi: 10.1016/j.matdes.2012.09.042.
Prasad K., Chakraborty S., A quality function deployment-based model for materials selection, Materials & Design, 49: 525–535, 2013, doi: 10.1016/j.matdes.2013.01.035.
Ilangkumaran M., Avenash A., Balakrishnan V., Kumar S.B., Raja M.B., Material selection using hybrid MCDM approach for automobile bumper, International Journal of Industrial and Systems Engineering, 14(1): 20–39, 2013, doi: 10.1504/IJISE.2013.052919.
Giorgetti A., Cavallini C., Citti P., Nicolaie F., Integral aided method for material selection based on quality function deployment and comprehensive VIKOR algorithm, Materials & Design, 47: 27–34, 2013, doi: 10.1016/j.matdes.2012.12.009.
Maity S.R., Chakraborty S., Grinding wheel abrasive material selection using fuzzy TOPSIS method, Materials and Manufacturing Processes, 28(4): 408–417, 2013, doi: 10.1080/10426914.2012.700159.
Chatterjee P., Chakraborty S., Gear material selection using complex proportional assessment and additive ratio assessment-based approaches: a comparative study, International Journal of Materials Science and Engineering, 1(2): 104–111, 2013, doi: 10.12720/ijmse.1.2.104-111.
Karande P., Gauri S.K., Chakraborty S., Applications of utility concept and desirability function for materials selection, Materials & Design, 45: 349–358, 2013, doi: 10.1016/j.matdes.2012.08.067.
Anojkumar L., Ilangkumaran M., Sasirekha V., Comparative analysis of MCDM methods for pipe material selection in sugar industry, Expert Systems with Applications: An International Journal, 41(6): 2964–2980, 2014, doi: 10.1016/j.eswa.2013.10.028.
Darji V.P., Rao R.V., Intelligent multi criteria decision making methods for material selection in sugar industry, Procedia Materials Science, 5: 2585–2594, 2014, doi: 10.1016/j.mspro.2014.07.519.
Yazdani M., Payam A.F., A comparative study on material selection of microelectromechanical systems electrostatic actuators using Ashby, VIKOR and TOPSIS, Materials & Design, 65: 328–334, 2015, doi: 10.1016/j.matdes.2014.09.004.
Anojkumar L., Ilangkumaran M., Vignesh M., A decision making methodology for material selection in sugar industry using hybrid MCDM techniques, International Journal of Materials and Product Technology, 51(2): 102–126, 2015, doi: 10.1504/IJMPT.2015.071770.
Xue Y.X., You J.X., Lai X.D., Liu H.C., An interval-valued intuitionistic fuzzy MABAC approach for material selection with incomplete weight information, Applied Soft Computing, 38: 703–713, 2016, doi: 10.1016/j.asoc.2015.10.010.
Chandrasekar V.S., Raja K., Material selection for automobile torsion bar using fuzzy TOPSIS tool, International Journal of Advanced Engineering Technology, 7(2): 343–349,2016.
Zhao R., Su H., Chen X., Yu Y. (Wang B., Zhang N., Rosen M.A.- Eds), Commercially available materials selection in sustainable design: an integrated multi-attribute decision making approach, Sustainability, 8(1): 1–15, 2016.
Singh T., Patnaik A., Chauhan R., Chauhan P., Selection of brake friction materials using hybrid analytical hierarchy process and Vise Kriterijumska Kptimizacija I Kompromisno Resenje approach, Polymer Composites, 2016, doi: 10.1002/pc.24113.
Mousavi-Nasab S.H., Sotoudeh-Anvai A., A comprehensive MCDM-based approach using TOPSIS, COPRAS and DEA as an auxiliary tool for material selection problems, Materials & Design, 121: 237–253, 2017, doi: 10.1016/j.matdes.2017.02.041.
Chatterjee P., Mondal S., Boral S., Banerjee A., Chakraborty S., A novel hybrid method for non-traditional machining process selection using factor relationship and multi-attribute border approximation method, Facta Universitatis, Series: Mechanical Engineering, 15(3): 439–456, 2017, doi.org/10.22190/FUME170508024C.
Montgomery D., Design and Analysis of Experiments, John Wiley & Sons, New York, USA, 1997.
İç Y.T., An experimental design approach using TOPSIS method for the selection of computer-integrated manufacturing technologies, Robotics and Computer-Integrated Manufacturing, 28(2): 245–256, 2012, doi: 10.1016/j.rcim.2011.09.005.
Chatterjee P., Chakraborty S., Development of a meta-model for determination of technological value of cotton fiber using design of experiments and TOPSIS method, Journal of Natural Fibers, 2017, doi:10.1080/15440478.2017.1376303.
Chatterjee P., Chakraborty S., A developed meta-model for selection of cotton fabrics using design of experiments and TOPSIS method, Journal of the Institution of Engineers (India): Series E, 98(2): 79–90, 2017, doi: 10.1007/s40034-017-0108-x.
Ghorabaee M.K., Zavadskas E. K., Olfat L., Turskis Z., Multi-criteria inventory classification using a new method of evaluation based on distance from average solution (EDAS), Informatica, 26(3): 435–451, 2015, doi: 10.15388/Informatica.2015.57.
Ghorabaee M.K., Zavadskas E.K., Amiri M., Turskis Z., Extended EDAS method for fuzzy multi-criteria decision-making: an application to supplier selection, International Journal of Computers Communications & Control, 11(3): 358–371, 2016, doi: 10.15837/ijccc.2016.3.2557.
Milani A.S., Shanian A., Madoliat R., Nemes J.A., The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection, Structural and Multidisciplinary Optimization 29(4): 312–318, 2005, doi:10.1007/s00158-004-0473-1.
Ilangkumaran M., Avenash A., Balakrishnan V., Barath Kumar S., Raja M.B., Material selection using hybrid MCDM approach for automobile bumper, International Journal of Industrial and Systems Engineering, 14(1): 20–39, 2013, doi: 10.1504/IJISE.2013.052919.
DOI: 10.24423/engtrans.812.2018