Engineering Transactions, 72, 3, pp. 365–385, 2024
10.24423/EngTrans.3277.2024

Investigation of the Effect of Viscosity and Density on the Wave Propagation of a Nonlocal Porous Beam Submerged in Fluid using Bernstein Polynomials

Thangamuni PRABHAKARAN
Karunya Institute of Technology and Sciences
India

Rajendran SELVAMANI
Karunya Institute of Technology and Sciences
India

Madasamy MAHAVEERSREEJAYAN
Nanjing University of Aeronautics and Astronautics
China

Lifeng WANG
Nanjing University of Aeronautics and Astronautics
China

This study investigates the effect of viscosity and density on the free vibration characteristics of a homogeneous porous Euler nanobeam submerged in fluid, incorporating the governing equations from Eringen’s nonlocal elasticity theory. To enhance computational efficiency in our analysis, we employ the Rayleigh-Ritz method, utilizing computationally efficient Bernstein polynomials as shape functions. Furthermore, we explore a range of classical boundary conditions tailored to address the specific problem at hand. In order to validate our findings, we conduct a comparative analysis against existing literature, thereby underscoring the effectiveness and robustness of our proposed methodology. Our research also places a significant emphasis on elucidating the impact of nonlocal parameters, non-dimensional amplitude, thickness, density, viscosity and porosity on non-dimensional frequency across various boundary conditions, including simply-supported (S-S), clamped-simply supported (C-S), and clamped-clamped (C-C) configurations.


Keywords: Euler nanobeam; fluid-solid interaction; nonlocal elasticity; porous nanobeam; Bernstein polynomials; Rayleigh-Ritz methodsticity, Porous nanobeam, Bernstein polynomials, Rayleigh-Ritz method.
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Peng H.B., Chang C.W., Aloni S., Yuzvinsky T.D., Zettl A. Ultrahigh frequency nanotube resonators, Physical Review Letters, 97(8): 087203, 2006, doi: 10.1103/PhysRevLett.97.087203.

Dubey A., Sharma G., Mavroidis C., Tomassone M.S., Nikitczuk K., Yarmush M.L., Computational studies of viral protein nano-actuators, Journal of Computational and Theoretical Nanoscience, 1(1): 18–28, 2004, doi: 10.1166/jctn.2003.003.

Ruud J.A., Jervis T.R., Spaepan F., Nano indentation of Ag/Ni multi-layered thin films, Journal of Applied Physics, 75(10): 4969-4974,1994, doi: 10.1063/1.355787.

Wang L.F., Hu H.Y., Flexural wave propagation in single-walled carbon nanotubes, Physical Review B, 71(19): 195412, 2005, doi: 10.1103/PhysRevB.71.195412.

Eringen A.C., Nonlocal polar elastic continua, International Journal of Engineering Science, 10(1): 1–16, 1972, doi: 10.1016/0020-7225(72)90070-5.

Reddy J.N., Nonlocal theories for bending, buckling and vibration of beams, International Journal of Engineering Science, 45(2-8): 288–307, 2007, doi: 10.1016/j.ijengsci.2007.04.004.

Chakraverty S., Behera L., Static and Dynamic Problems of Nanobeams and Nanoplates, World Scientific, 2017.

Wang Q., Wave propagation in carbon nanotubes via nonlocal continuum mechanics, Journal of Applied Physics, 98(12): 124301, 2005, doi: 10.1063/1.2141648.

Wang C.M., Zhang Y.Y., He X.Q., Vibration of nonlocal Timoshenko beams, Nanotechnology 18(10): 105401, 2007, doi: 10.1088/0957-4484/18/10/105401.

Zhang Y.Q., Liu G.R., Xie X.Y., Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity, Physical Review B, 71(19): 195404, 2005, doi: 10.1103/PhysRevB.71.195404.

Karmakar S., Chakraverty S., Boundary characteristic Bernstein polynomials based solution for free vibration of Euler nanobeams, Journal of Composites Science, 3(4): 99, 2019, doi: 10.3390/jcs3040099.

Wang C.M., Kitipornchai S., Lim C.W., Eisenberger M., Beam bending solution based on nonlocal Timoshenko beam theory, Journal of Engineering Mechanics, 134(6): 475–481, 2008, doi: 10.1061/(ASCE)0733-9399(2008)134:6(475).

Phadikar J.K., Pradhan S.C., Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates, Computational materials science, 49(3): 492–499, 2010, doi: 10.1016/j.commatsci.2010.05.040.

Eltaher M.A., Emam S.A., Mahmoud F.F., Free vibration analysis of functionally graded size-dependent nanobeams, Applied Mathematics and Computation, 218(14): 7406–7420, 2012, doi: 10.1016/j.amc.2011.12.090.

Mohammadi B., Ghannadpour S.A.M., Energy approach vibration analysis of nonlocal Timoshenko beam theory, Procedia Engineering, 10: 1766–1771, 2011, doi: 10.1016/j.proeng.2011.04.294.

Roque C.M.C., Ferreira A.J.M., Reddy J.N., Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method, International Journal of Engineering Science, 49(9): 976–984, 2011, doi: 10.1016/j.ijengsci.2011.05.010.

Belkorissat I., Houari M.S.A., Tounsi A., Adda Bedia E.A., Mahmoud S.R., On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model, Steel Composite Structures, 18(4): 1063–1081, 2015, doi: 10.12989/scs.2015.18.4.1063.

Bounouara F., Benrahou K.H., Belkorissat I., Tounsi A., A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation, Steel and Composite Structures, 20(2), 227–249, 2016, doi: 10.12989/scs.2016.20.2.227.

Pradhan S.C., Murmu T., Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever, Physica E: Low-dimensional systems and Nanostructures, 42(7): 1944–1949, 2010, doi: 10.1016/j.physe.2010.03.004.

Atmane H.A., Tounsi A., Bernard F., Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations, International Journal of Mechanical and Materials in Design, 13(1): 71–84, 2017, doi: 10.1007/s10999-015-9318-x.

Atmane H.A., Tounsi A., Bernard F., Mahmoud S.R., A computational shear displacement model for vibrational analysis of functionally graded beams with porosities, Steel and Composite Structures, 19(2): 369–384, 2015, doi: 10.12989/scs.2015.19.2.369.

Behera L., Chakraverty S., Free vibration of Euler and Timoshenko nanobeams using boundary characteristic orthogonal polynomial, Applied Nanoscience, 4(3): 347–358, 2014, doi: 10.1007/s13204-013-0202-4.

Barati M.R., Nonlocal-strain gradient forced vibration analysis of metal foam nanoplates with uniform and graded porosities, Advances in Nano Research, 5(4): 393–414, 2017, doi: 10.12989/anr.2017.5.4.393.

Barati M.R., Vibration analysis of FG nanoplates with nanovoids on viscoelastic substrate under hygro-thermo-mechanical loading using nonlocal strain gradient theory, Structural Engineering and Mechanics, 64(6): 683–693, 2017, doi: 10.12989/sem.2017.64.6.683.

Pourjabari A., Hajilak Z. E., Mohammadi A., Habibi M., Safarpour H., Effect of porosity on free and forced vibration characteristics of the GPL reinforcement composite nanostructures, Computers & Mathematics with Applications, 77(10): 2608–2626, 2019, doi: 10.1016/j.camwa.2018.12.041.

Civalek O., Akgoz B., Free vibration analysis of microtubules as cytoskeleton components: nonlocal Euler-Bernoulli beam modeling, Iranian Journal of Science and Technology, Transaction B: Mechanical Engineering, 17: 367–375, 2010.

Chen D., Yang J., Kitipornchai S., Free and forced vibrations of shear deformable functionally graded porous beams, International Journal of Mechanical Sciences, 108-109: 14–22, 2016, doi: 10.1016/j.ijmecsci.2016.01.025.

Sheykhi M., Eskandari A., Ghafari D., Arpanahi R. A., Mohammadi B., Hashemi S. H., Investigation of fluid viscosity and density on vibration of nano beam submerged in fluid considering nonlocal elasticity theory, Alexandria Engineering Journal, 65: 607–614, 2023, doi: 10.1016/j.aej.2022.10.016.

Kováčik J., Marsavina L., Linul E., Poisson’s ratio of closed-cell aluminium foams, Materials, 11(10): 1904, 2018, doi: 10.3390/ma11101904.

Arpanahi R. A., Hosseini-Hashemi S., Rahmanian S., Hashemi S. H., Ahmadi-Savadkoohi A., Nonlocal surface energy effect on free vibration behavior of nanoplates submerged in incompressible fluid, Thin-Walled Structures, 143: 106212, 2019, doi: 10.1016/j.tws.2019.106212.

Parsa A., Mahmoudpour E., Nonlinear free vibration analysis of embedded flexoelectric curved nanobeams conveying fluid and submerged in fluid via nonlocal strain gradient elasticity theory, Microsystem Technologies, 25: 4323–4339, 2019, doi: 10.1007/s00542-019-04408-0.

Li H.C., Ke L.L., Yang J., Kitipornchai S., Wang Y.S., Free vibration of variable thickness FGM beam submerged in fluid, Composite Structures, 233: 111582, 2020, doi: 10.1016/j.compstruct.2019.111582.

Arpanahi R.A., Eskandari A., Mohammadi B., Hashemi S.H., Study on the effect of viscosity and fluid flow on buckling behavior of nanoplate with surface energy, Results in Engineering, 18: 101078, 2023, doi: 10.1016/j.rineng.2023.101078.

Li H.C., Ke L., Yang J., Kitipornchai S., Size-dependent free vibration of microbeams submerged in fluid, International Journal of Structural Stability and Dynamics, 20(12): 2050131, 2020, doi: 10.1142/S021945542050131X.

Arpanahi R.A., Mohammadi B., Ahmadian M.T., Hashemi S.H., Study on the buckling behavior of nonlocal nanoplate submerged in viscous moving fluid, International Journal of Dynamics and Control, 11(6): 2820–2830, 2023, doi: 10.1007/s40435-023-01166-w.

Wang L., Ni Q., A reappraisal of the computational modelling of carbon nanotubes conveying viscous fluid, Mechanics Research Communications, 36(7): 833–837, 2009, doi: 10.1016/j.mechrescom.2009.05.003.

Mirjavadi S.S., Afshari B.M., Barati M.R., Hamouda A.M.S., Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection, Microsystem Technologies, 25: 3137–3150, 2019, doi: 10.1007/s00542-018-4277-4.




DOI: 10.24423/EngTrans.3277.2024