Engineering Transactions, 71, 4, pp. 553–569, 2023
10.24423/EngTrans.3111.20231107

2D Numerical Analysis of an H-Darrieus Hydrokinetic Turbine with Passive Improvement Mechanisms

Angie Judith GUEVARA MUÑOZ
Instituto Tecnológico Metropolitano ITM
Colombia

Diego Andres HINCAPIE ZULUAGA
Instituto Tecnológico Metropolitano ITM
Colombia

Jorge Andres SIERRA DEL RÍO
Institución Universitaria Pascual Bravo
Colombia

Ramon Fernando COLMENARES QUINTERO
Universidad Cooperativa de Colombia
Colombia

Edwar TORRES LOPEZ
Universidad de Antioquia
Colombia

Miguel Angel RODRIGUEZ CABAL
Instituto Tecnológico Metropolitano ITM
Colombia

H-Darrieus hydrokinetic turbines are an alternative for small hydroelectric plants. These turbines are considered to have a low environmental impact as they do not require reservoirs. However, they have limited self-starting capacity, which limits their use. Nevertheless, the configuration of passive mechanisms in the H-Darrieus turbines affects their performance, as they tend to increase the flow velocity. This study is part of a project with the aim to design and build a turbine to generate energy in the Colombian river scenario in non-interconnected zones. The objective of this study is to analyze the performance through numerical simulations of four H-Darrieus rotors to be configured with passive improvement mechanisms. The study was conducted using ANSYS® Fluent software, employing transient, two-dimensional models under constant operating conditions. Overlapping meshes were used for the stationary and rotating domain configuration. The results show that increased solidity leads to decreased tip speed ranges and increased maximum rotor power. Improvement in the self-starting capability was found with passive mechanisms employing a diffuser geometry. Among the tested configurations, the rotor configured with a Venturi-shaped mechanism achieved a remarkable 660% improvement in the power coefficient compared to configurations without such mechanisms.

Keywords: renewable energy; H-Darrieus rotor; hydrokinetics; diffusers; computational fluids dynamics (CFD); external accessories
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

IEA, Global Energy Review 2020,, Paris, 2020, https://www.iea.org/reports/global-energy-review-2020/renewables#abstract (accessed: Jan. 26, 2022).

Balkhair K.S., Rahman K.U., Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale, Applied Energy, 188: 378–391, 2017, doi: 10.1016/j.apenergy.2016.12.012.

Khan M.J., Bhuyan G., Iqbal M.T., Quaicoe J.E., Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review, Applied Energy, 86(10): 1823–1835, 2009, doi: 10.1016/j.apenergy.2009.02.017.

Anyi M., Kirke B., Tests on a non-clogging hydrokinetic turbine, Energy for Sustainable Development, 25: 50–55, 2015, doi: 10.1016/j.esd.2015.01.001.

Yuce M.I., Muratoglu, A.,Hydrokinetic energy conversion systems: A technology status review, Renewable and Sustainable Energy Reviews, 43: 72–82, 2015, doi: 10.1016/j.rser.2014.10.037.

Aristizábal-Tique V.H., Villegas-Quiceno A.P., Arbeláez-Pérez O.F., Colmenares-Quintero R.F., Vélez-Hoyos F. J., Development of riverine hydrokinetic energy systems in Colombia and other world regions: a review of case studies, DYNA, 88(217): 256–264, 2021, doi: 10.15446/dyna.v88n217.93098.

Khan M.J., Iqbal M.T., Quaicoe J.E., River current energy conversion systems: Progress, prospects and challenges, Renewable and Sustainable Energy Reviews, 12(8): 2177–2193, 2008, doi: 10.1016/j.rser.2007.04.016.

Sornes K., Small-scale Water Current Turbines for River Applications, 2010, www.zero.no (accessed: Apr. 03, 2020).

Guney M.S., Evaluation and measures to increase performance coefficient of hydrokinetic turbines, Renewable and Sustainable Energy Reviews, 15(8): 3669–3675, 2011, doi: 10.1016/j.rser.2011.07.009.

Mon E.E., Design of low head hydrokinetic turbine, International Journal of Trend in Scientific Research and Development (IJTSRD), 3(5): 2106–2109, 2019, https://www.ijtsrd.com/papers/ijtsrd27865.pdf

Bel Mabrouk I., El Hami, A., Effect of number of blades on the dynamic behavior of a Darrieus turbine geared transmission system, Mechanical Systems and Signal Processing, 121: 562–578, 2019, doi: 10.1016/j.ymssp.2018.11.048.

Castelli M.R., Betta S. De, Benini E., Effect of blade number on a straight-bladed vertical-axis Darreius wind turbine, World Academy of Science, Engineering and Technology, International Journal of Aerospace and Mechanical Engineering, 6(1): 256–262, 2012, doi: 10.5281/zenodo.1079974.

Hameed M.S., Afaq S.K., Design and analysis of a straight bladed vertical axis wind turbine blade using analytical and numerical techniques, Ocean Engineering, 57: 248–255, 2013, doi: 10.1016/j.oceaneng.2012.09.007.

Rezaeiha A., Montazeri H., Blocken B., Towards optimal aerodynamic design of vertical axis wind turbines: Impact of solidity and number of blades, Energy, 165 (Part B): 1129–1148, 2018, doi: 10.1016/j.energy.2018.09.192.

Ahmadi-Baloutaki M., Carriveau R., Ting D.S.K., Straight-bladed vertical axis wind turbine rotor design guide based on aerodynamic performance and loading analysis, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 228(7): 742–759, 2014, doi: 10.1177/0957650914538631.

Tobon-Tobon N., Henao-González K.A., Burbano-Hernandez A.F., Sierra-Del Rio J., Hincapié Zuluaga D.A., Influence of the solidity and the number of blades in a vertical axis turbine type H-Darrieus [in Spanish: Influencia de la solidez y el número de álabes en una turbina de eje vertical tipo h-darrieus], Revista Politécnica, 16(32): 9–18, 2020, doi: 10.33571/rpolitec.v16n32a1.

Du L., Ingram G., Dominy R.G., Experimental study of the effects of turbine solidity, blade profile, pitch angle, surface roughness, and aspect ratio on the H-Darrieus wind turbine self-starting and overall performance, Energy Science and Engineering, 7(6): 2421–2436, 2019, doi: 10.1002/ese3.430.

Mohamed M. H., Impacts of solidity and hybrid system in small wind turbines performance, Energy, 57: 495–504, 2013, doi: 10.1016/j.energy.2013.06.004.

Guevara A., Hincapie D., Rio J.S.-D., Rodriguez-, M.A., Torres E., Numerical comparison and efficiency analysis of three vertical axis turbine of H-Darrieus type, EUREKA: Physics and Engineering, 2: 28–39, 2023, doi: 10.21303/2461-4262.2023.002593.

Gosselin R., Dumas G., Boudreau M., Parametric study of H-Darrieus vertical-axis turbines using CFD simulations, Journal of Renewable and Sustainable Energy, 8(5): 053301, 2016, doi: 10.1063/1.4963240.

Kumar P.M., Ajit K.R., Surya M.R., Srikanth N., Lim T.C., On the self starting of Darrieus turbine: An experimental investigation with secondary rotor, Asian Conference on Energy, Power and Transportation Electrification, 2017: 1–7, 2017, doi: 10.1109/ACEPT.2017.8168545.

Shimokawa K., Furukawa A., Okuma K., Matsushita D., Watanabe S., Experimental study on simplification of Darrieus-type hydro turbine with inlet nozzle for extra-low head hydropower utilization, Renewable Energy, 41: 376–382, 2012, doi: 10.1016/j.renene.2011.09.017.

Hashem I., Mohamed M.H., Aerodynamic performance enhancements of H-rotor Darrieus wind turbine, Energy, 142: 531–545, 2018, doi: 10.1016/j.energy.2017.10.036.

Tunio I.A., Shah M.A., Hussain T., Harijan K., Mirjat N.H., Memon A.H., Investigation of duct augmented system effect on the overall performance of straight blade Darrieus hydrokinetic turbine, Renewable Energy, 153: 143–154, 2020, doi: 10.1016/j.renene.2020.02.012.

Patel V., Eldho T.I., Prabhu S.V., Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower, Renewable Energy, 135: 1144–1156, 2019, doi: 10.1016/j.renene.2018.12.074.

Janon A., Torque coefficient analysis of a novel direct-drive parallel-stream counter-rotating Darrieus turbine system, Renewable Energy, 147 (Part 1): 110–117, 2020, doi: 10.1016/j.renene.2019.08.118.

Jahangir Alam M., Iqbal M.T., Design and development of hybrid vertical axis turbine, 2009 Canadian Conference on Electrical and Computer Engineering, 978: 1178–1183, 2009, doi: 10.1109/CCECE.2009.5090311.

Daróczy L., Janiga G., Petrasch K., Webner M., Thévenin D., Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors, Energy, 90(1): 680–690, 2015, doi: 10.1016/j.energy.2015.07.102.

Ansys Inc., User Manual Ansys ICEM CFD 12.1, 0844682: 724–746, 2009.

Carrica P.M., Wilson R.V., Noack R.W., Stern F., Ship motions using single-phase level set with dynamic overset grids, Computers & Fluids, 36(9): 1415–1433, 2007, doi: 10.1016/J.COMPFLUID.2007.01.007.

Wang S., Ingham D.B., Ma L., Pourkashanian M., Tao Z., Turbulence modeling of deep dynamic stall at relatively low Reynolds number, Journal of Fluids and Structures, 33: 191–209, 2012, doi: 10.1016/j.jfluidstructs.2012.04.011.

Almohammadi K.M., Ingham D.B., Ma L., Pourkashan M., Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine, Energy, 58: 483–493, 2013, doi: 10.1016/j.energy.2013.06.012.

Lanzafame R., Mauro S., Messina M., 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model, Energy Procedia, 45: 131–140, 2014, doi: 10.1016/j.egypro.2014.01.015.

Marsh P., Ranmuthugala D., Penesis I., Thomas G., The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines, Renewable Energy, 105: 106–116, 2017, doi: 10.1016/j.renene.2016.11.063.

Mohamed M.H., Ali A.M., Hafiz A.A., CFD analysis for H-rotor Darrieus turbine as a low speed wind energy converter, Engineering Science and Technology, an International Journal, 18(1): 1–13, 2015, doi: 10.1016/j.jestch.2014.08.002.

Castañeda Ceballos L., Cardona Valencia M., Hincapié Zuluaga D., Sierra-del Rio J., Vélez Garcia S., Influence of the Number of Blades in the Power Generated by a Michell Banki Turbine, International Journal of Renewable Energy Research, 7(4): 1989–1997, 2017, doi: 10.20508/ijrer.v7i4.6372.g7246.

Beltran-Urango D., Herrera-Díaz J.L., Posada-Montoya J.A., Castañeda L., Sierra-del Rio J.A., Generation of electric power through gravitational vortices [in Spanish: Generación de Energía Eléctrica Mediante Vórtices Gravitacionales], Memorias EXPO Tecnologias 2016, Medellin, Antioquia, pp. 90–107, 2016.

Patel V., Eldho T.I., Prabhu S.V., Experimental investigations on Darrieus straight blade turbine for tidal current application and parametric optimization for hydro farm arrangement, International Journal of Marine Energy, 17: 110–135, 2017, doi: 10.1016/j.ijome.2017.01.007.

Hansen M.O.L., Sørensen N.N., Flay R.G.J., Effect of placing a diffuser around a wind turbine, Wind Energy, 3(4): 207–213, 2000, doi: 10.1002/WE.37.

Ohya Y., Karasudani T., Sakurai A., Inoue M., Development of a high-performance wind turbine equipped with a brimmed diffuser shroud, Transactions of the Japan Society for Aeronautical and Space Sciences, 49(163): 18–24, 2006, doi: 10.2322/tjsass.49.18.

Jamieson P.M., Beating betz: energy extraction limits in a constrained flow field, Journal of Solar Energy Engineering, Transactions of the ASME, 131(3): 0310081, 2009, doi: 10.1115/1.3139143.




DOI: 10.24423/EngTrans.3111.20231107