Engineering Transactions, 71, 4, pp. 595–616, 2023
10.24423/EngTrans.3110.20231121

Optimization of Drilling Parameters for Aluminum Metal Matrix Composite Using Entropy-Weighted TOPSIS under MQL Conditions

Sachin G. GHALME
ORCID ID 0000-0002-5977-5113
Sandip Institute of Technology and Research Centre
India

Paweł KAROLCZAK
ORCID ID 0000-0002-0595-1580
Wroclaw University of Science and Technology
Poland

The aim of the present work is to understand the effect of drilling parameters (drill speed and feed rate) during the drilling of a Saffil fiber-reinforced Al metal matrix composite (MMC) under minimum quantity lubrication (MQL) condition. The effect of drilling parameters on individual response characteristics is evaluated and the optimum drilling parameters are also investigated using a multi-response optimization technique known as the entropy-weighted technique for order performance by similarity to ideal solution (EWTOPSIS). The drilling parameter optimization is performed with the aim of minimizing surface roughness in the drilled hole, roundness error in the drilled hole and feed force during drilling. The drilling parameters have a significant effect on individual responses. Weights were assigned to each response using the entropy weight method, and closeness coefficients were calculated to obtain the optimal level for the drilling parameters. A drill speed of 11 m/min and a feed rate of 0.05 mm/rev are the optimal combination to minimize the desired output responses simultaneously.

Keywords: Al metal matrix composite; drilling; parameter optimization; entropy weight; Grey relational analysis
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Gill R.S, Samra P.S., Kumar A., Effect of different types of reinforcement on tribological properties of aluminium metal matrix composites (MMCs) – A review of recent studies, Materials Today: Proceedings, 56(2): 3094–3101, 2022, doi: 10.1016/j.matpr.2021.12.211.

Kumar A., Grover N., Manna A., Chohan J.S., Kumar R., Singh S., Pruncu C.I., Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites, Advanced Composite Letters, 29: 1–14, 2020, doi: 10.1177/2633366X20963137.

Singh H., Singh K., Vardhan S., Mohan S., A comprehensive review on the new developments consideration in a stir casting processing of aluminum matrix composites, Materials Today: Proceedings, 60(2): 974–981 2022, doi: 10.1016/j.matpr.2021.12.359.

Sivasankaran S., Harisagar P.T., Saminathan E., Siddharth S., Sasikumar P., Effect of nose radius and graphite addition on turning of AA 7075-ZrB2 in-situ composites, Procedia Engineering, 97: 582–589, 2014, doi: 10.1016/j.proeng.2014.12.286.

Kaczmar J.W., Naplocha K., Morgiel J., Microstructure and strength of Al2O3 and carbon fiber reinforced 2024 aluminum alloy composites, Journal of Materials Engineering and Performance, 23(8): 2801–2808, 2014, doi: 10.1007/s11665-014-1036-2.

Pugazhenthi A., Kanagaraj G., Dinaharan I., Raja Selvam J.D., Turning characteristics of in situ formed TiB2 ceramic particulate reinforced AA7075 aluminum matrix composites using polycrystalline diamond cutting tool, Measurement, 121: 39–46, 2018, doi: 10.1016/j.measurement.2018.02.039.

Nicholls C.J., Boswell B., Davies I.J., Islam M.N., Review of machining metal matrix composites, The International Journal of Advanced Manufacturing Technology, 90(9): 2429–2441, 2017, doi: 10.1007/s00170-016-9558-4.

Karolczak P., Kołodziej M., Kowalski M., Effectiveness of diamond blades in the turning of aluminium composites, Advances in Science and Technology Research Journal, 14(4): 262–272, 2020, doi: 10.12913/22998624/127436.

Marimuthu S., Antar M., Dunleavey J., Characteristics of micro-hole formation during fibre laser drilling of aerospace superalloy, Precision Engineering, 55: 339–348, 2019, doi: 10.1016/j.precisioneng.2018.10.002.

Kumar H., Choudhary R., Singh S., Experimental and morphological investigations into electrical discharge surface grinding (EDSG) of 6061Al/ Al2O3p 10% composite by composite tool electrode, Journal of Materials Engineering and Performance, 23(4): 1489–1497, 2014, doi: 10.1007/s11665-014-0899-6.

Deshmukh S., Joshi G., Ingle A., Thakur D., An overview of aluminium matrix composites: particulate reinforcements, manufacturing, modelling and machining, Materials Today: Proceedings, 46(17): 8410–8416, 2021, doi: 10.1016/j.matpr.2021.03.450.

Huang S.T., Zhou L., Chen J., Xu L.F., Drilling of SiCp/Al metal matrix composites with polycrystalline diamond (PCD) tools, Materials and Manufacturing Processes, 27(10): 1090–1094, 2012, doi: 10.1080/10426914.2011.654152.

Rajmohan T., Palanikumar K., Kathirvel M., Optimization of machining parameters in drilling hybrid aluminium metal matrix composites, Transactions of Nonferrous Metals Society of China, 22(6): 1286–1297, 2021, doi:10.1016/S1003-6326(11)61317-4.

Tosun G., Muratoglu M., The drilling of an Al/SiCp metal-matrix composites. Part I: Microstructure, Composites Science and Technology, 64(2): 299–308, 2004, doi: 10.1016/S0266-3538(03)00290-2.

Butola R., Sharma V., Kanwar S., Tyagi L., Singari R.M., Tyagi M., Optimizing the machining variables in CNC turning of aluminium based hybrid metal matrix composites, SN Applied Sciences, 2(8): 2020, doi: 10.1007/s42452-020-3155-8.

Senthilkumar C., Optimisation of EDC parameters using TOPSIS approach, International Journal of Machining and Machinability of Materials, 21(5/6): 480–492, 2019, doi: 10.1504/IJMMM.2019.103138.

Ramakrishnan H., Balasundaram R., Selvaganapathy P., Santhakumari M., Sivasankaran P., Vignesh P., Experimental investigation of turning Al 7075 using Al2O3 nano-cutting fluid: ANOVA and TOPSIS approach, SN Applied Sciences, 1(12): 1639, 2019, doi: 10.1007/s42452-019-1664-0.

Reddy P.V., Ramanjaneyulu P., Reddy B.V., Rao P.S., Simultaneous optimization of drilling responses using GRA on Al-6063/TiC composite, SN Applied Sciences, 2(3): 431, 2020, doi: /10.1007/s42452-020-2214-5.

Asad Abbas Ch, Huang C., Wang J., Wang Z., Liu H., Zhu H., Machinability investigations on high-speed drilling of aluminium reinforced with silicon carbide metal matrix composites, The International Journal of Advanced Manufacturing Technology, 108: 1601–1611, 2020, doi: 10.1007/s00170-020-05409-4.

Sharma V.S., Dogra M., Suri N.M., Cooling techniques for improved productivity in turning, International Journal of Machine Tools and Manufacture, 49(6): 435–453, 2009, doi: 10.1016/j.ijmachtools.2008.12.010.

Varadarajan A.S., Philip P.K., Ramamoorthy B., Investigations on hard turning with minimal cutting fluid application (HTMF) and its comparison with dry and wet turning, International Journal of Machine Tools and Manufacture, 42(2): 193–200, 2002, doi: 10.1016/S0890-6955(01)00119-5.

Kannan C., Varun Chaitanya C.H., Padala D., Reddy L., Ramanujam R., Balan A.S.S., Machinability studies on aluminium matrix nanocomposite under the influence of MQL, Materials Today: Proceedings, 22(4): 1507–1516, 2020, doi: 10.1016/j.matpr.2020.02.068.

Xu J., Ji M., Chen M., Ren F., Investigation of minimum quantity lubrication effects in drilling CFRP/Ti6Al4V stacks, Materials and Manufacturing Processes, 34(12): 1401–1410, 2019, doi: 10.1080/10426914.2019.1661431.

Carou D., Rubio E.M., Davim J.P., A note on the use of the minimum quantity lubrication (MQL) system in turning, Industrial Lubrication and Tribology, 67(3): 256–261, 2015, doi: 10.1108/ILT-07-2014-0070.

Szymczak T., Kowalewski Z.L., Brittle fracture of metal-ceramic composites [in Polish: Kruche pękanie kompozytów metalowo-ceramicznych], Materiały kompozytowe, 1: 53–57, 2016.

AZO Matrials, Titanium (Ti) – Properties, Applications, 2001, https://www.azom.com/properties.aspx?ArticleID=1720.

Naplocha K., Optimization of technological parameters in the manufacturing process of AK9 materials reinforced with Al2O3 ceramic fibers [in Polish], PhD Thesis, Wrocław University of Science and Technology, Wrocław, 1999.

Shannon C.E., A mathematical theory of communication, The Bell System Technical Journal, 27(3): 379– 423, 1948, doi: 10.1002/j.1538-7305.1948.tb01338.x.

Wang E., Alp N., Shi J., Wang C., Zhang X., Chen H., Multi-criteria building energy performance benchmarking through variable clustering based compromise TOPSIS with objective entropy weighting, Energy, 125: 197–210, 2017, doi: 10.1016/j.energy.2017.02.131.

Mert A., Shannon entropy-based approach for calculating values of WABL parameters, Journal of Taibah University for Science, 14(1): 1100–1109, 2020, doi: 10.1080/16583655.2020.1804157.

Ding X, Chong X., Bao Z., Xue Y., Zhang S., Fuzzy comprehensive assessment method based on the entropy weight method and its application in the water environmental safety evaluation of the Heshangshan drinking water source area, Three Gorges Reservoir Area, China, Water, 9(5): 329, 2017, doi: 10.3390/w9050329.

Kumar R., Singh S., Singh Bilga P., Jatin, Singh J., Singh S., Scutaru M.L., Pruncu C.I., Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review, Journal of Materials Research and Technology, 10: 1471–1492, 2021, doi: 10.1016/j.jmrt.2020.12.114.

Hwang C.L., Yoon K., Multiple Attribute Decision Making Methods and Applications: a State-of-the-Art Survey, Springer: Berlin/Heidelberg, 1981.

Manivannan R., Kumar M.P., Multi-attribute decision-making of cryogenically cooled micro-EDM drilling process parameters using TOPSIS method, Materials and Manufacturing Processes, 32(2): 209–215, 2017, doi: 10.1080/10426914.2016.1176182.

Thirumalai R., Senthilkumaar J.S., Multi-criteria decision making in the selection of machining parameters for Inconel 718, Journal of Mechanical Science and Technology, 27(4): 1109–1116, 2013, doi: 10.1007/s12206-013-0215-7.

Singh A., Ghadai R.K., Kalita K., Chatterjee P., Pamučar D., EDM process parameter optimization for efficient machining of Inconel-718, FACTA UNIVERSITATIS Series: Mechanical. Engineering, 18(3): 473–490, 2020, doi: 10.22190/FUME200406035S.

Singaravel B., Thangiah S., Application of integrated Taguchi and TOPSIS method for optimization of process parameters for dimensional accuracy in turning of EN25 steel, Journal of the Chinese Institute of Engineers, 40(4): 267–274, 2017, doi: 10.1080/02533839.2017.1308233.

Yuvaraj N., Kumar M.P., Multi-response optimization of abrasive water jet cutting process parameters using TOPSIS approach, Materials and Manufacturing Processes, 30(7): 882–889, 2015, doi: 10.1080/10426914.2014.994763.

Rabieh M., Rafsanjani A.F., Babaei L., Esmaeili M., Sustainable supplier selection and order allocation: an integrated Delphi method, fuzzy TOPSIS, and multi-objective programming model, Scienta Iranica, 26(4): 2524–2540, 2019, doi: 10.24200/sci.2018.5254.1176.




DOI: 10.24423/EngTrans.3110.20231121