Engineering Transactions, 16, 4, pp. 474-497, 1968

O dwu odmianach metody Pohlhausena i ich zastosowaniu do przepływu w sąsiedztwie punktu spiętrzenia

W.J. Prosnak
Zakład Mechaniki Cieczy i Gazów Instytutu Podstawowych Problemów Techniki

M.E. Klonowska
Zakład Mechaniki Cieczy i Gazów Instytutu Podstawowych Problemów Techniki

This paper contains a description of two variants of the Pohlhausen's method and their application to the stagnation flow point at a moving wall. The two variants differ by the
«compatibility» condition which is a conclusion from the boundary layer equations and concerns the derivative of the flow velocity at the wall. It is shown that those of the polynomials representing in an approximate manner the velocity distribution in the layer that satisfy the compatibility condition describe the boundary layer, in the case considered, in a worse manner than those that do not satisfy the compatibility condition. This result contradicts the conclusion of Hugelman's paper, [1], and is independent of the degree N of the approximation polynomial.
In any case it is valid for N = 4; 6; 8.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).


R. D. HUGELMAN, Application of Pohlhausen's method to stagnation M-point flow, AIAA Journal, 11, 3 (1965), 2158.

H. SCHLICHTING und A. ULRICH, Zur Berechung des Umschlages laminar/turbulent, Jahrbuch 1942 der deutschen Luftfahrtforschung, 18-I35.

R. D. HUGELMAN and D. R. HAWORTH, An MHD boundary layer compatibility condition, ATAA Journal, 7, 3 (1965), 1367-1369.

K. POHLHAUSEN, Zur näherungsweisen Integration der Differentialgleichung der laminaren Grenzschicht, ZAMM, 4, (1921), 252-268.

W. J. PROSNAK, On the Viscous Flow Near the Stagnation Point on an Interface. AFOSR 1952. Princeton University, Dept. Aero, Eng., Report 563 (1961).

W.J. PROSNAK, A note 0n the application of Pohlhausen's method to the stagnation point flow, Arch. Bud. Masz., 1, 10 (1963), 3-14. Erratum: Arch. Bud. Masz., 1, 13 (1966), 153-154.

S. GOLDSTEIN, Modern Developments in Fluid Dynamics, Oxford at the Clarendon Press, 1950, Vol. I, str. 161.

K. NICKEL, Einge Eigenschaften von Lösungen der Prandtlschen Grenzschicht-Differential-gleichungen, Arch. for Rat. Mech. and Analysis, 1, 2 (1958), 1-31.