Engineering Transactions, 71, 3, pp. 399–417, 2023
10.24423/EngTrans.2453.20230704

Influence of Cutting Parameters and Tool Edge Geometries on the Machinability of AISI 52100 Steel in Hard Whirling

Shuquan SONG
Yancheng Institute of Technology, Zhejiang Provincial Key Laboratory for Cutting Tools
China

Yu ZHANG
Yancheng Institute of Technology
China

Jiangtao CHENG
Yancheng Institute of Technology
China

Hao ZHANG
Yancheng Institute of Technology
China

Xiangyu GUAN
Yancheng Institute of Technology
China

Dunwen ZUO
Nanjing University of Aeronautics & Astronautics
China

Xiaoqiang SHEN
Suzhou Institute of Industrial Technology
China

The synergistic effect of prepared tool edge and cutting parameters in hard whirling is still unclear, limiting its application in producing large precision ball screws. This paper aims to reveal the effect mechanism of cutting parameters and edge geometries in the whirling process to improve the stability of ball screw quality. A novel cutting force measurement strategy is proposed, and a systematic study of cutting force, surface quality and tool wear is implemented. The results show that small feed (less than 0.15 mm) and high cutting speed (more than 180 m/min) can ensure machining efficiency and improve surface quality. The machining quality can be improved when the edge radius is 10 μm, and the chamfer size is 0.1 mm×20°. The tool with a 30 μm edge radius has a low probability of early failure, but the later wear is severe and timely sharpening is recommended. This study could guide cutting parameters and edge geometry optimization to improve the stability of the quality in hard whirling.

Keywords: hard whirling; cutting edge radius; cutting parameters; machinability
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).

References

Matsumura T., Serizawa M., Ogawa T., Sasaki M., Surface dimple machining in whirling, Journal of Manufacturing Systems, 37(2): 487–493, 2015, doi: 10.1016/j.jmsy.2014.07.008.

Kennedy B., Whirled piece, Cutting Tool Engineering Magazine, 57(4): 28–34, 2005.

Son J.H., Han C.W., Kim S.I., Jung H.C., Lee Y.M., Cutting forces analysis in whirling process, International Journal of Modern Physics B, 24(15,16): 2786–2791, 2010, doi: 10.1142/S0217979210065635.

Lee M.H., Kang D.B., Son S.M., Ahn J.H., Investigation of cutting characteristics for worm machining on automatic lathe – Comparison of planetary milling and side milling, Journal of Mechanical Science and Technology, 22(12): 2454–2463, 2008, doi: 10.1007/s12206-008-0713-1.

Liu C., He Y., Wang Y.L., Li Y., Wang S., Wang L., Wang Y., An investigation of surface topography and workpiece temperature in whirling milling machining, International Journal of Mechanical Sciences, 164: 105182, 2019, doi: 10.1016/j.ijmecsci.2019.105182.

He Y., Liu C., Wang Y.L., Li Y., Wang S., Wang L., Wang Y., Analytical modeling of temperature distribution in lead-screw whirling milling considering the transient un-deformed chip geometry, International Journal of Mechanical Sciences, 157–158: 619–632, 2019, doi: 10.1016/j.ijmecsci.2019.05.008.

Guo Q., Chang L., Ye L., Wang Y., Feng H., Cao Y., Lian Q., Li Y., Residual stress, nanohardness, and microstructure changes in whirlwind milling of GCr15 steel, Materials and Manufacturing Processes, 28(10): 1047–1052, 2013, doi: 10.1080/10426914.2013.763963.

Guo Q., Ye L., Wang Y.L., Feng H., Li Y., Comparative assessment of surface roughness and microstructure produced in whirlwind milling of earing steel, Machining Science and Technology, 18(2): 251–276, 2014, doi: 10.1080/10910344.2014.897843.

Liu C., He Y., Li Y.F., Wang Y., Wang S., Wang Y., Modeling of residual stresses by correlating surface topography in machining of AISI 52100 steel, Journal of Manufacturing Science and Engineering, 144(5): 051008, 2022, doi: 10.1115/1.4052706.

Guo Q., Wang M.L., Xu Y.F., Wang Y., Minimization of surface roughness and tangential cutting force in whirlwind milling of a large screw, Measurement, 152(3): 107256, 2019, doi: 10.1016/j.measurement.2019.107256.

Liu C., He Y., Li Y.F., Wang Y., Wang L., Wang S., Wang Y., Predicting residual properties of ball screw raceway in whirling milling based on machine learning, Measurement: Journal of the International Measurement Confederation, 173: 108605, 2020, doi: 10.1016/j.measurement.2020.108605.

Wang Y.L., Yin C., Li L., Zha W., Pu X., Wang Y., Wang J., He Y., Modeling and optimization of dynamic performances of large-scale lead screws whirl milling with multi-point variable constraints, Journal of Materials Processing Technology, 276(1): 116392, 2019, doi: 10.1016/j.jmatprotec.2019.116392.

He Y., Wang L.X., Wang Y.L., Li Y., Wang S, Wang Y., Liu C., Hao C., An analytical model for predicting specific cutting energy in whirling milling process, Journal of Cleaner Production, 240: 118181, 2019, doi: 10.1016/j.jclepro.2019.118181.

Zhu H.Y., Ni S.Y., Li Y., Experimental study and design for PCBN tools used in large-scale thread hard whirling, Manufacturing Technology & Machine Tool, (6): 93–95, 2014.

Denkena B., Biermann D., Cutting edge geometries, CIRP Annals – Manufacturing Technology, 63(2): 631–653, 2014, doi: 10.1016/j.cirp.2014.05.009.

Wu X., Li L., He N., Yao C., Zhao M. Influence of the cutting edge radius and the material grain size on the cutting force in micro cutting, Precision Engineering, 45: 359–364, 2016, doi: 10.1016/j.precisioneng.2016.03.012.

Ventura C.E.H., Chaves H.S., Campos Rubio J.C., Abrão A.M., Denkena B., Breidenstein B., The influence of the cutting tool microgeometry on the machinability of hardened AISI 4140 steel, The International Journal of Advanced Manufacturing Technology, 90(9): 2557–2565, 2017, doi: 10.1007/s00170-016-9582-4.

Klocke F., Kratz H., Advanced tool edge geometry for high precision hard turning, CIRP Annals – Manufacturing Technology, 54(1): 47–50, 2005, doi: 10.1016/S0007-8506(07)60046-8.

Rech J., Yen Y.C., Schaff M.J., Hamdi H., Altan T., Bouzakis K.D., Influence of cutting edge radius on the wear resistance of PM-HSS milling inserts, Wear, 259(7–12): 1168–1176, 2005, doi: 10.1016/j.wear.2005.02.072.

Endres W.J., Kountanya R.K., The effects of corner radius and edge radius on tool flank wear, Journal of Manufacturing Processes, 4(2): 89–96, 2002, doi: 10.1016/S1526-6125(02)70135-7.

Kang Z., Experimental research on turning process and surface integrity with minimum quantity lubrication [in Chinese], PhD thesis, Shanghai Jiao Tong University, 2011.

Qian L., Hossan M.R., Effect on cutting force in turning hardened tool steels with cubic boron nitride inserts, Journal of Materials Processing Technology, 191(1–3): 274–278, 2007, doi: 10.1016/j.jmatprotec.2007.03.022.

Chen R.Y., Metal Cutting Principle, 2nd ed., Machinery Industry Press, 2002.

Ozlu E., Budak E., Molinari A., Analytical and experimental investigation of rake contact and friction behavior in metal cutting, International Journal of Machine Tools & Manufacture, 49(11): 865–875, 2009, doi: 10.1016/j.ijmachtools.2009.05.005.




DOI: 10.24423/EngTrans.2453.20230704