Engineering Transactions, 31, 1, pp. 77-84, 1983

The Bending Vibrations of an Anisotropic Free Circular Plate of Regular Symmetry

A. Klimasek
Silesian Technical University, Gliwice
Poland

A.O. Pilski
Silesian Technical University, Gliwice
Poland

J. Zabawa
Silesian Technical University, Gliwice
Poland

The elasticity moduli determination method of the regular symmetry ingle crystals by bending vibrations ęxcitation  in circular plate samples with the middle planes perpendicular to the crystallographic [100] and [110] directions is given in the work. The adaptation of the method for any other pair of directions presents no difficulties. Resonance frequencies of the free edge circular anisotropic plate were determined, too. In order to solve Eqs. (3.1) and (3.3), the consecutive approximation method was used. The method seemed to be the most simple and proper in this case. It enabled to give evident dependence between the resonance frequency of the sample and the elasticity moduli and the Poisson constant. Measurements were taken for Si and Ge single crystals.
Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

G. KIRCHHOFF, J. fur die Reine und Angewandte Mathematik (Crelles Journ. of Math.), 10, 51, 1850.

J. RYLL-NARDZEWSKI, Arch. Akustyki, 10, 1, 1975.

G. MARTINCEK, J. Sound Vibr., 2, 116, 1963.

S. G. LECHNICKIJ, Anizotropnyje plastinki, GIT-TL, Moskwa 1957.

R. F. S. HEARMON, Uvod do teorie pruznosti anizotropnich latek, Praha 1965.

S. G. LECHNICKIJ, Teoria uprugosti anizotropnovo tiela, GIT-TL, Moskwa-Leningrad 1950.

R. COURANT, D. HILBERT, Method of mathematical physics, I, New York 1955.

L. BAUER, E. L. REISS, JASA, 53, 1360, 1973.

S. KALISKI, Drgania i fale, PWN, Warszawa 1966.

A. OPILSKI, A A. KLIMASEK, J. ZABAWA, J. RAŁUSZKlEWICZ, S. SZRAJBER, H. BAGIŃSKI, J. Techn. Phys., 18, 231, 177.

S. P. NIKANOROW, I. A. BURJENKOW, A. W. STJEPANOW, Fiz. Tverd. Tiela, 13, 3001, 1971.

W. A. BRANTLEY, J. Appl. Phys., 44, 534, 1973.