10.24423/EngTrans.1069.20200211
Lightweighting of Wishbone Finite Element Analysis
References
IEA: Energy statistics of non-OECD countries, International Energy Agency, Paris, 2003.
IEA: Energy statics of OECD countries. International Energy Agency, Paris, 2003.
Helms H., Lambrecht U., The potential contribution of light-weighting to reduce transport energy consumption, International Journal of Life Cycle Assessment, 12(1): 58–64, 2007, doi: 10.1065/lca2006.07.258.
Koffler, C., Rodhe-Branderburger K., On the calculation of fuel savings through lightweight design in automotive life cycle assessments, International Journal of Life Cycle Assessment, 15(1): 128–135, 2010, doi: 10.1007/s11367-009-0127-z.
Cheah L., Evans C., Bandivadekar A., Heywood J., Factor of two: halving the fuel consumption of new US automobiles by 2035, [in:] Reducing Climate Impacts in the Transportation Sector, Cannon J.S., Sperling D. [Eds], pp. 49–71, 2008.
Kulkarni V., Jadhav A., Basker P., Finite element analysis and topology optimization of lower arm of double wishbone suspension using RADIOSS and optistruct, International Journal of Science and Research, 3(5): 639–643, 2014.
Swapnil S.K., Amol N.P., Amol B.G., Design optimisation of a lower control arm of suspension system in a LCV by using topological approach, International Journal of Innovative Research in Science, Engineering and Technology, 6(6): 11657–11665, 2017, doi: 10.15680/IJIRSET.2017.0606084.
Heo S.J., Kang D.O., Lee J.H., Kim I.H., Darwish S.M., Shape optimization of lower control arm considering multi-disciplinary constraint condition by using progress meta-model method, International Journal of Automotive Technology, 14(3): 499–505, 2013, doi: 10.1007/s12239-013-0054-7.
Viqaruddin M., Reddy D.R., Structural optimization of control arm for weight reduction and improved performance, Materials Today: Proceedings, 4(8): 9230–9236, 2017, doi: 10.1016/j.matpr.2017.07.282.
Yildiz A.R., Kaya N., Ozturk F., Alankus O., Optimal design of vehicle components using topology design and optimisation, International Journal of Vehicle Design, 34(4): 387–398, 2004, doi: 10.1504/IJVD.2004.004064.
Wilson A., Vehicle weight is the key driver for automotive composites, Reinforced Plastics, 61(2): 100–102, 2017, doi: 10.1016/j.repl.2015.10.002.
Jeyanthi S, Rani J.J., Influence of natural long fiber in mechanical, thermal and recycling properties of thermoplastic composites in automotive components, International Journal of Physical Sciences, 7(43): 5765–5771, 2012, doi: 10.5897/IJPS12.521.
Setiawan R., Salim M.R., Crashworthiness design for an electric city car against side pole impact, Journal of Engineering and Technological Sciences, 49(5): 587–603, 2017, doi: 10.5614/j.eng.technol.sci.2017.49.5.3.
Wicaksono S., Rahman MR., Mihradi S., Prifiharni S., Finite element analysis of bus rollover test in accordance with UN ECE R66 Standard, Journal of Engineering and Technological Sciences, 49(6): 799–810, 2017, doi: 10.5614/j.eng.technol.sci.2017.49.6.7.
Katili I., Maknun I.J., Batoz J.L., Ibrahimbegovic A., Shear deformable shell element DKMQ24 for composite structures, Composite Structures, 202: 182–200, 2018, doi: 10.1016/j.compstruct.2018.01.043.
Rangaswamy T., Vijayrangan S., Optimal sizing and stacking sequence of composite drive shafts, Materials science, 11(2): 133–139, 2005.
Reddy P.S., Nagaraju C.,Weight optimization and finite element analysis of composite automotive drive shaft for maximum stiffness, Materials Today: Proceedings, 4(2, A): 2390–2396, 2017, doi: 10.1016/j.matpr.2017.02.088.
Song Z., Zhao X., Research on lightweight design of automobile lower arm based on carbon fiber materials, World Journal of Engineering and Technology, 5(4): 730–742, 2017, doi: 10.4236/wjet.2017.54061.
DOI: 10.24423/EngTrans.1069.20200211