Engineering Transactions, 67, 2, pp. 199–211, 2019

The Influence of High-Strength Bolts Stiffening on Flange Connection Behaviour

Izabela MAJOR
Czestochowa University of Technology

Maciej MAJOR
Czestochowa University of Technology

Krzysztof KULIŃSKI
Czestochowa University of Technology

Flange connections can commonly be seen in advertising board structures, which are subjected to wind loading. Depending on the structure’s geometry, additional torsion forces should be taken into account. In this paper the static behaviour of a flange connection with high-strength bolts under torsion load has been discussed. The numerical analysis concerns two cases: a flange connection subjected only to a high-strength bolts prestressing load and a flange connection subjected to both – bolts prestressing force and torsion moment. The stated boundary problem has been solved with the use of SolidWorks software. The obtained numerical results show good agreement with the analytical method.
Keywords: flange connection; high-strength bolts; tightening torque; torsion analysis; structural analysis
Full Text: PDF
Copyright © The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0).


The history of the bolt, (22.02.2019).

Hu Y., Shen L., Nie S., Yang B., Sha W., FE simulation and experimental tests of high-strength structural bolts under tension, Journal of Constructional Steel Research, 126: 174–186, 2016, doi: 10.1016/j.jcsr.2016.07.021.

Grimsmo E.L., Aalberg A., Langseth M., Clausen A.H., Failure modes of bolt and nut assemblies under tensile loading, Journal of Constructional Steel Research, 126: 15–25, 2016, doi: 10.1016/j.jcsr.2016.06.023.

Blachowski B., Gutkowski W., Effect of damaged circular flange-bolted connections on behaviour of tall towers, modelled by multilevel substructuring, Engineering Structures, 111: 93–103, 2016.

Peixoto R.M., Seif M.S., Vieira L.C.M., Double-shear tests of high-strength structural bolts at elevated temperatures, Fire Safety Journal, 94: 8–21, 2017, doi: 10.1016/j.firesaf.2017.09.003.

Liu H., Liu D., Chen Z., Yu Y., Post-fire residual slip resistance and shear capacity of high-strength bolted connection, Journal of Constructional Steel Research, 138: 65–71, 2017, doi: 10.1016/j.jcsr.2017.06.026.

Guo Z., Lu N., Zhu F., Gao R., Effect of preloading in high-strength bolts on bolted-connections exposed to fire, Fire Safety Journal, 90: 112–122, 2017, doi: 10.1016/j.firesaf.2017.04.030.

Kodur V., Yahyai M., Rezaeian A., Eslami M., Poormohamadi A., Residual mechanical properties of high strength steel bolts subjected to heating-cooling cycle, Journal of Constructional Steel Research, 131: 122–131, 2017, doi: 10.1016/j.jcsr.2017.01.007.

Krishnamurthy N., A fresh look at bolted end-plate behavior and design, Engineering Journal, 15(2): 39–49, 1978.

Mashaly E., El-Heweity M., Abou-Elfath H., Osman M., Behavior of four-bolt extended end-plate connection subjected to lateral loading, Alexandria Engineering Journal, 50(1): 79–90, 2011, doi: 10.1016/j.aej.2011.01.011.

Selejdak J., Kuliński K., Major M., Static analysis of a simple end-plate connection with high tensile bolts at different tightening torque using fem software, Proceedings of International Conference METAL 2017, (8p.) [in print].

Szafran J., Juszczyk K., Kamiński M., Experiment-based reliability analysis of structural joints in a steel lattice tower, Journal of Constructional Steel Research, 154: 278–292, 2019.

Grzejda R., Modelling nonlinear preloaded multi-bolted systems on the operational state, Engineering Transactions, 64(4): 525–531, 2016.

Farmani M.A., Ghassemieh M., Shape memory alloy-based moment connections with superior self-centering properties, Smart Materials and Structures, 25(7): 075028, 2016, doi: 10.1088/0964-1726/25/7/075028.

Moradi S., Alam M.S., Feasibility study of utilizing superelastic shape memory alloy plates in steel beam–column connections for improved seismic performance, Journal of Intelligent Material Systems and Structures, 26(4): 463–475, 2015, doi: 10.1177/1045389X14529032.

Fang C., Yam M.C., Ma H., Chung K.F. Tests on superelastic Ni–Ti SMA bars under cyclic tension and direct-shear: towards practical recentring connections, Materials and Structures, 48(4): 1013–1030, 2015.

Krejsa M., Brozovsky J., Mikolasek D., Koubova L., Parenica P., Materna A., Numerical modeling of fillet and butt welds in steel structural elements with verification using experiment, Procedia Engineering, 190: 318–325, 2017, doi: 10.1016/j.proeng.2017.05.344.

Kormaníková E., Kotrasová K., Analysis and optimization of laminated circular cylindrical shell, WSEAS Transactions on Applied and Theoretical Mechanics, 12, pp. 163–172, 2017,

Major M., Kuliński K., Major I., Dynamic analysis of an impact load applied to the composite wall structure, MATEC Web of Conferences, 107, 6 pages, 2017, doi: 10.1051/matecconf/201710700055.

Kozłowski A. [Ed.], Steel structures. Numerical examples in accordance with PN-EN 1993-1-1. Part One. Choosen elements and connections [in Polish: Konstrukcje stalowe. Przykłady obliczeń wg PN-EN 1993-1-1. Część pierwsza. Wybrane elementy i połączenia], Oficyna Wydawnicza PRz, Rzeszów 2009.

Biegus A., Designing of steel structures in accordance with Eurocode 3 – Part four: bolt connections [in Polish: Projektowanie konstrukcji stalowych według Eurokodu 3 – Część czwarta: Połączenia śrubowe], Wydawnictwo Politechniki Wrocławskiej – Wydział Budownictwa Lądowego i Wodnego, Wrocław 2010.

Supplementary information: Initial selection of a butt joint [in Polish: Informacje uzupełniające: Wstępny dobór połączenia doczołowego prostego. SN013a-PL-EU],

Recommended maximum bolt loads and torque values (Metric Coarse Threads), (date accessed: 30th November 2018).

DOI: 10.24423/EngTrans.1006.20190405