Engineering Transactions, 16, 1, pp. 69-99, 1968

Teoria wiskozymetrów dla jednorodnych mieszanin gruntowo-wodnych

W. Parzonka
Wyższa Szkoła Rolnicza, Wrocław Katedra Budownictwa Wodnego
Poland

This paper contains a theoretical analysis of fundamental viscometric instruments for homogeneous water-soil mixtures. These mixtures are composed of water and soil grains, the size of which is 2 to 50-100u. The rheologic behaviour of such mixtures depends on the properties of the solid particles: their form, size, specific weight and, in particular, their concentration. The limit concentration slim is an important characteristic of the mixture: which has the properties of
a Newtonian body for s’lim and those of a non-Newtonian body above this limit.
Correct determination of the rheologic properties of a water-soil mixture can be achieved by models of flow of viscoplastic bodies, the rheologic properties of which are independent of time, that is
a) The Newtonian model (1) for low concentration mixtures, having the properties of a two-phase liquid, for s' < s’lim;
b) The Bingham (2) or De Waele-Ostwald (3) model for high concentrations, s' < s’lim.
An important condition of correct measurement is the application of viscometers (viscosimeters) designed for the required accuracy of measurement and the type of liquid to be investigated. For
homogeneous water-soil mixtures with large grains viscometers of a relatively wide gap (of the order of 1 mm or more) should be applied. This requirement is satisfied only by rotational visco-meters (viscosimeters) of the Couette type or tube type viscometers. The cone-plate type is not suitable the gap: (which is- below 10-10u) being too small.
he paper explains a theory of flow of the three bodies just mentioned through viscometers of both types. The Couette viscometer is much more accurate, because it ensures quasi-homogeneous stress field and a wide range of linear measurement.
The paper contains also a description of methods of accurate measurement and viscometers for Bingham-type plastic bodies and pseudo-plastic bodies. It contains also a selection of description,
1) for Bingham bodies, of
a) a method of selection of a Couette viscometer knowing the order of magnitude of the number τ0/ηp and the parameters of the viscometer characterized by the number a = R_2^2/R_(1 )^2and the maximum angular Ωmax,
b) a method of selection of a tube type viscometer the linear range of which is characterized by the generalized Reynolds number Re*;
2) for pseudo-plastic bodies is proposed
a) a method of correction of the measurement results obtained by means of viscometers of the Couette type. It is shown also that the difference between the pseudo-coefficient of rigidity kap and its real value k can be disregarded under the condition that a viscometer In this case the maximum deviation is smaller than 3,8%; of a < 1,10 is used.
b) a method of determining the linear measurement range for rotational viscometers and tubes.

Full Text: PDF
Copyright © Polish Academy of Sciences & Institute of Fundamental Technological Research (IPPT PAN).

References

G. ANNEN, Zur Berechnung der Reibungsverluste von Klärschlamm, Gas- und Wasserfach, Wasser-Abwasser, 12, 22. III. 1963, 342-346.

H. E. BABBITT, D. H. CALDWELL, The flow of muds, sludges and suspensions in circular pipe, Trans. Amer. Inst. Chem. Engrs., 37 (1941), 237.

E. C. BINGHAM, Fluidity and Plasticity, New-York 1922.

J. BOURCART, J. FLORENTIN, V. ROMANOWSKX, Sur un appareil permettant la détermination de la rigidité des suspensions grossières, C. R. Acad. Sc. Paris, 212 (1941), 624-684.

J. BRIANT, Revue de l'Institut Français du Pétrole, 11 (1956), 113-133, 247-287.

J. G. BRODNYAN, F. H. GASKINS, W. PAILIPOFF, Correlation between rheological parameters measured in instruments of different geometries, Symposium on Non-Newtonian Viscometry,

Washington X/1960, 14-25.

D. W. DODGE, A. B. METZNER, Flow of non-Newtonian systems, A. I. Ch. E. J. 2, 5 (1959), 189-204.

W. VON ENGELHARDT, H. LÜBBEN, Absolute Viscositätsmessungen mit einem Rotations- viscosimeter nach Couette-Hatschek, Kolloid-Ztschr., 1/2, 147 (1956), 1-6.

H. ENNEKING, Theoretische und experimentale Untersuchung einer thixotropischen Suspension am Beispiel von Bentonit, Dissertation, Rhein. Tech. Westf. Hochschule, Aachen 1960.

A. G. EPPRECHT, Le comportement rhéologique véritable des substances plastiques, Revue Intern. de la Chocolaterie, 7, 1959.

[in Russian]

[in Russian]

K. H. GRODDE, Ein Absolut-Rheometer vom Couette-Typ, Kolloid-Ztschr., 1/2, 139 (1954), 91-96.

E. HATSCHEK, La viscosité des liquides, Paris 1932.

B. O. H. HEDSTROM, Flow of plastics materials in pipes, Ind. and Engin. Chem., 3, 44 (1952), 651-656.

[in Russian]

[in Russian]

M. KEPES, Un nouveau consistomètre à large gamme de gradients, et de la température, Journal of Polymere Sciences, 23 (1956), 109-122.

I. KISIEL, Kilka uwag o pomiarach cech reologicznych gruntów, Arch. Hydrot., 2 (1965), 165-181.

, A.B. METZNER, J.C. REED, Flow of non-Newtonian fluids-correlation of the laminar, transition, and turbulent flow regions, A. I. Ch. E. Journal, Dec. 1955, 434-440.

W. OSTWALD, Über die Geschwindigkeitsfuntion der Viscosität disperser Systeme, Kolloid-Ztg., 36 (1925), 99-117.

W. PARZONKA, Une méthode exacte de la détermination des constantes rhéologiques des: corps plastiques de Bingham à l'aide du viscosimère type Couette, La Houille Blanche, 8 (1964), 921-927.

W. PARZONKA, Détermination de la concentration limite des mixtures homogènes, C.R. Acad. Sc. Paris, 258 (1944), 5583-86.

W. PARZONKA, Ustalenie modelu reologicznego dla namulu na podstawie pomiarów ruro- wych i wiskozymetrycznych, Politechnika Wroctawska, Sympozjum z Reologii, 1964.

S. PETER, W. ŚLIWKA, Ein Absolut-Viscosimeter des Couette-Typs von hoher Messgenauig- keit, Chemie-Ingenieur-Technik, 28 (1956), 49-53.

M. REINER, Über die Strömung einer elastischen Flüssigkeit durch eine Kapillare, Kolloid- Ztg., 1, 39 (1926), 80-87.

M. REINER, Deformation, Strain and Flow. An Elementary Introduction to Rheology, London 1960.

M. REINER, R. RIVLIN, Über die Stromung einer elastischen Flüssigkeit im Couette Apparat, Kolloid-Ztg., 1, 43 (1927).

V. ROMANOWSKY, Recherches sur les propriétés physiques des sédiments, Thèse, Université de Paris, 1948.

D. G. THOMAS, Transport characteristics of suspensions, part IV. Friction Loss of concentrated-flocculated snspensions in turbulent flow, A.I.Ch.E. Journal, 8 (1962), 266-271.

J. R. VAN WAZER. J. W. LYONS, K. Y. KIM, R. E. COLWELL, Viscosity and Flow Measurement, New-York-London 1963.

R. N. WELTMANN, KUHNS, An automatic viscometer for non-Newtonian materials, NACA T.N. 3510, Washington 1955.

R. H. WILHELM, D. M. WROUGHTON, W. F. LOEFFEL, Flow of suspensions through pipes, Ind. and Engin. Chemistry, 31 (1939), 622.

W. L. WILKINSON, Non-Newtonian Fluids Mechanics, Mixing and Heat Transfer, Pergamon Press 1960.

[in Russian]

J. ZAWADZKI, W. SIUTA, Z badań nad płynięciem cieczy lepkiej przez kapilarę, Zesz. Nauk. Polit. Wrocł., Mechanika VI, Wrocław 1961, 129-142.