**18**, 4, pp. 631-674, 1970

### Zastosowanie metody różnic skończonych do zagadnień pełzania kołowo cylindrycznych powłok

In Part I of the paper, the transient creep analysis of circular cylindrical shell is developed on the basis of the power creep law and the creep theories of Mises-Mises, Tresca-Mises and Tresca-Tresca type. Use is made of the strain-hardening hypotheses. The creep deformation and the associated state of stress is investigated for various shell geometries and various magnitudes of internal pressure. The difference between the creep theories and hardening hypotheses as applied to the present problem is also discussed. Calculations are performed for constant as well as variable internal pressures. Part II is concerned with the analysis of the steady-state crcep of a circular cylindrical shell according to the power creep law nad the creep theory of Mises-Mises type. An iterative procedure

combined with the finite-difference method is proposed. The effect of shell geometry and the creep exponent on the state of stress and rate of deformation is investigated. The rigorous results obtained are also compared with the previous solution on the basis of a sandwich shell, and the validity of the assumption of sandwich construction is discussed.

**Full Text:**PDF

#### References

W. OLSZAK and A. SAWCZUK, Inelastic Behaviour in Shells, Noordhoff, Groningen 1967.

J.F. BESSELING, Creep in Structures, Proc. IUTAM Colloquium, p. 174, Springer, Berlin 1962.

G. ROSENGREN, Arch. Mech. Stos., 4, 16 (1964), 959.

B. EINARSSON, J. Engng Math., 2, 2 (1968), 123.

S. MURAKAMI and M. TANI, Proc. Romanian Nat. Conf. Apl. Mech., Bucharest 1969, in press.

R. K. PENNY, Int. J. Mech. Sci., 9 (1967), 373.

A. E. JOHNSON and B. KHAN, Int. J. Mech. Sci., 7 (1965), 791.

I. FINNIE and W. R. HELLER, Creep of Engineering Materials, McGraw-Hill, New York 1959.

F. K. G. ODQVIST and J. HULT, Kriechfestigkeit metallischer Werkstoffe, Springer, Berlin 1962.

F. GAROFALO, Fundamentals of Creep and Creep-Rupture in Metals, McMillan, New York 1965.

A. M. WAHL, Trans. ASME, Ser. D, J. Basic Engng, 1, 85 (1963), 66. 12. A. M. WAHL, Proc. 4th U. S. Nat. Cong. Appl. Mech., ASME, New York 1962, 18.

A. E. GEMMA, G. H. ROWE and R. J. SPAHL, Trans, ASME, Ser. D, J. Basic Engng, 83 (1961), 545.

S. P. TIMOSHENKO and S. WOINOWSKY-KRIEGER, Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York 1959.

G. E. FORSYTHE and W.R. WASOW, Finite-Difference Methods for Partial Differential Equations, John Wiley, New York 1966.

A. RALSTON and H.S. WILE, Mathematical Methods for Digital Computers, John Wiley, New York 1960.

YU.N. RABOTNOV, Creep of Constructional Elements, Nauka (1966).

E. T. ONAT and H. YÚKSEL, Proc. 3rd U.S. Nat. Cong. Appi. Mech., ASME, New York 1958, 625.

M. P. BIENIEK and A. M. FREUDENTHAL, J. Aerospace Sci., 1, 27 (1960), 763.

V. I. ROZENBLUM, Prikl. Math. Mekh., 1, 27 (1963), 154.

C. R. CALLADINE, Proc. Symp. Nuclear Reactor Containment Building and Pressure Vessels, Butterworth 1960, 411.

C. R. CALLADINE, Nonclassical Shell Problems, North-Holland, 1964, 384.

C. R. CALLADINE and D. C. Drucker, Quart. Appl. Math., 20 (1962), 79.

I. G. TEREGULOV, Prikl. Math. Mekh., 26 (1962), 492.

I. G. TEREGULOV, Izv. AN SSSR, Mekh. i Mashinostr., No 6, 1963, 169.

YU. N. RABOTNOV, Prikl. Math. Mekh., 1, 27 (1963), 154.

YU. N. RABOTNOV, Applied Mechanics, Proc, 11th Internat. Cong. Appl. Mech., Springer, 1966, 415.

YU. M. VOLCHOV, Izv. AN SSSR, Mekh. i Mashinostr., No. 5, 1966, 118.

A. E. GEMMA, T. Aerospace Sci., 12, 27 (1960), 953.

A. B. GEMMA, J. Aerospace Sci., 3, 29 (1962), 352.

F. A. COZZARELLI, S. A. PATEL and B. VENKATRAMAN, AIAA J., 7, 3 (1965), 1298.

T. P. BRYNE and A.C. MACKenzIe, J. Mech. Eng. Sci., 8 (1966), 216. 33. N. J. HOFF, Quart. Appl. Math., 1, 12 (1954), 49.

H. B. KELLER and E. L. REISS, Comm. Pure and Appl. Math., 3, 11 (1958), 273.

H. B. KELLER and E. L. REISS, J. Aerospace Sci., 10, 26 (1959), 643.