Performance of a Hybrid Ichthyoid-Waterjet Articulated Propulsor

Downloads

Authors

  • Tomasz SZMIDT Institute of Fundamental Technological Research, Polish Academy of Sciences, Poland ORCID ID 0000-0002-2676-1882

Abstract

The concept of a bioinspired ichthyoid-waterjet propulsor for autonomous underwater vehicles (AUVs) is investigated. The propulsor consists of an articulated fluid-conveying pipe with a propulsive fin at the end. Water drawn into the hull is accelerated to a supercritical velocity, which yields flutter vibrations of the propulsor resembling the motion of a swimming fish. The fin acts on the surrounding water and generates thrust. At the same time, the ejected water produces recoil. Using the proposed dynamical model, three types of propulsors for different swimming speeds are investigated. At low swimming speeds, the propulsive force generated by the propulsors can be up to 30% higher than the thrust of a conventional waterjet propulsor with the same physical parameters. However, this advantage in the generated thrust decreases with the swimming speed increase. The results are obtained by analyzing the approximation of the bifurcating solution and numerical simulations of the differential equation governing the dynamics.

Keywords:

autonomous underwater vehicle, waterjet propulsion, fish swimming, flutter, fluid-conveying pipe

References


  1. Algar´in-Pinto J.A., Garza-Casta˜non L.E., Vargas-Martinez A., Minchala-Avila L.I., Dynamic modeling and control of a parallel mechanism used in the propulsion system of a biomimetic underwater vehicle, Applied Sciences, 11(11): 4909, 2021, https://doi.org/10.3390/app11114909.

  2. Bayat B., Crespi A., Ijspeert A., Envirobot: A bio-inspired environmental monitoring platform, [in:] 2016 IEEE/OES Autonomous Underwater Vehicles (AUV), pp. 381–386, 2016, https://doi.org/10.1109/AUV.2016.7778700.

  3. Benjamin T.B., Dynamics of a system of articulated pipes conveying fluid. I. Theory, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 261(1307): 457–486, 1961, https://doi.org/10.1098/rspa.1961.0090.

  4. Benjamin T.B., Dynamics of a system of articulated pipes conveying fluid. II. Experiments, Proceedings of the Royal Society of London. Series A., Mathematical and Physical Sciences, 261(1307): 487–499, 1961, https://doi.org/10.1098/rspa.1961.0091.

  5. Clapham R.J., Hu H., iSplash: Realizing fast carangiform swimming to outperform a real fish, [in:] Robot Fish. Springer Tracts in Mechanical Engineering, Du R., Li Z., Youcef-Toumi K., Valdivia y Alvarado P. [Eds], pp. 193–218, Springer, Berlin, Heidelberg, 2015, https://doi.org/10.1007/978-3-662-46870-8. 7.

  6. Ebrahimi A., Razaghian A., Seif M., Zahedi F., Nouri-Borujerdi A., A comprehensive study on noise reduction methods of marine propellers and design procedures, Applied Acoustics, 150: 55–69, 2019, https://doi.org/10.1016/j.apacoust.2018.12.004.

  7. Elishakoff I., Controversy associated with the so-called “follower forces”: Critical overview, Applied Mechanics Reviews, 58(2): 117–142, 2005, https://doi.org/10.1115/1.1849170.

  8. Fish F., Lauder G., Not just going with the flow, American Scientist, 101(2): 114–123, 2013, https://bpb-us-e1.wpmucdn.com/sites.harvard.edu/dist/6/58/files/2022/03/Fish.Lauder.2013.pdf.

  9. Fish F.E., Advantages of natural propulsive systems, Marine Technology Society Journal, 47(5): 37–44, 2013, https://doi.org/10.4031/MTSJ.47.5.2.

  10. Hellum A., Mukherjee R., B´enard A., Hull A.J., Modeling and simulation of the dynamics of a submersible propelled by a fluttering fluid-conveying tail, Journal of Fluids and Structures, 36: 83–110, 2013, https://doi.org/10.1016/j.jfluidstructs.2012.08.006.

  11. Hellum A., Mukherjee R., Hull A.J., Flutter instability of a fluid-conveying fluid-immersed pipe affixed to a rigid body, Journal of Fluids and Structures, 27(7): 1086–1096, 2011, https://doi.org/10.1016/j.jfluidstructs.2011.03.002.

  12. Hellum A.M., Strefling P.C., Mukherjee R., Maneuvering and control of a synergistically propelled ichthyoid, [in:] Proceedings of the ASME 2012 5th Annual Dynamic Systems and Control Conference joint with the JSME 2012 11th Motion and Vibration Conference, 2: 187–193, 2012, https://doi.org/10.1115/DSCC2012-MOVIC2012-8680.

  13. Iooss G., Joseph D., Elementary Stability and Bifurcation Theory, 2nd ed., Springer, New York, 2012, https://doi.org/10.1007/978-1-4612-0997-3.

  14. Jaya A.S., Kartidjo M.W., Thrust and efficiency enhancement scheme of the fin propulsion of the biomimetic autonomous underwater vehicle model in low-speed flow regime, Ocean Engineering, 243: 110090, 2022, https://doi.org/10.1016/j.oceaneng.2021.110090.

  15. Li G., Liu G., Leng D., Fang X., Li G., Wang W., Underwater undulating propulsion biomimetic robots: A review, Biomimetics, 8(3): 318, 2023, https://doi.org/10.3390/biomimetics8030318.

  16. Li J., Li W., Liu Q., Luo B., Cui W., Current status and technical challenges in the development of biomimetic robotic fish-type submersible, Ocean-Land-Atmosphere Research, 3: 0036, 2024, https://doi.org/10.34133/olar.0036.

  17. Li J., Ma L., Chen D., Qi Y., Bai T., Pan G., Comparative study of hydrodynamic performance of submerged water jet propeller and conventional propeller under multiple operating conditions, Machines, 13(2): 147, 2025, https://doi.org/10.3390/machines13020147.

  18. Li Y., Xu Y., Wu Z., Ma L., Guo M., Li Z., Li Y., A comprehensive review on fish-inspired robots, International Journal of Advanced Robotic Systems, 19(3): 17298806221103707, 2022, https://doi.org/10.1177/17298806221103707.

  19. Liang J., Wang T., Wen L., Development of a two-joint robotic fish for real-world exploration, Journal of Field Robotics, 28(1): 70–79, 2011, https://doi.org/10.1002/rob.20363.

  20. Lighthill J., Aquatic animal locomotion, [in:] Proceedings of the 13th International Congress of Theoretical and Applied Mechanics, Becker E., Mikhailov G.K. [Eds], pp. 29–46, Springer, Berlin, Heidelberg, 1973, https://doi.org/10.1007/978-3-642-65590-6_3.

  21. Lighthill M.J., Note on the swimming of slender fish, Journal of Fluid Mechanics, 9(2): 305–317, 1960, https://doi.org/10.1017/S0022112060001110.

  22. Lighthill M.J., Aquatic animal propulsion of high hydromechanical efficiency, Journal of Fluid Mechanics, 44(2): 265–301, 1970, https://doi.org/10.1017/S0022112070001830.

  23. Lighthill M.J., Large-amplitude elongated-body theory of fish locomotion, Proceedings of the Royal Society of London. Series B. Biological Sciences, 179(1055): 125–138, 1971, https://doi.org/10.1098/rspb.1971.0085.

  24. Liu T., Qiu J., Geng H., Cai Y., Wang Z., Tao J., Underwater radiated noise characteristics: A comparative study of immersed and traditional waterjet propulsion systems, Science Progress, 108(2): 00368504251336888, 2025, https://doi.org/10.1177/00368504251336888.

  25. Maertens A., Triantafyllou M.S., Yue D.K., Efficiency of fish propulsion, Bioinspiration & Biomimetics, 10(4): 046013, 2015, https://doi.org/10.1088/1748-3190/10/4/046013.

  26. Mason R., Burdick J., Experiments in carangiform robotic fish locomotion, [in:] Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), 1: 428–435, 2000, https://doi.org/10.1109/ROBOT.2000.844093.

  27. Masoomi S.F., Gutschmidt S., Gaume N., Guillaume T., Eatwel C., Chen X., Sellier M., Design and construction of a specialised biomimetic robot in multiple swimming gaits, International Journal of Advanced Robotic Systems, 12(11): 168, 2015, https://doi.org/10.5772/60547.

  28. Neira J., Sequeiros C., Huamani R., Machaca E., Fonseca P., Nina W., Review on unmanned underwater robotics, structure designs, materials, sensors, actuators, and navigation control, Journal of Robotics, 2021(1): 5542920, 2021, https://doi.org/10.1155/2021/5542920.

  29. Omelyanyuk M., Ukolov A., Pakhlyan I., Bukharin N., El Hassan M., Experimental and numerical study of cavitation number limitations for hydrodynamic cavitation inception prediction, Fluids, 7(6): 198, 2022, https://doi.org/10.3390/fluids7060198.

  30. Paidoussis M.P., Hydroelastic ichthyoid propulsion, Journal of Hydronautics, 10(1): 30–32, 1976, https://doi.org/10.2514/3.63050.

  31. Paidoussis M.P., Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 1, ed. 2, Academic Press, UK, 2014.

  32. Paidoussis M.P., Fluid-Structure Interactions: Slender Structures and Axial Flow, vol. 2, ed. 2, Academic Press, UK, 2016.

  33. Petritoli E., Leccese F., Autonomous underwater glider: A comprehensive review, Drones, 9(1): 21, 2025, https://doi.org/10.3390/drones9010021.

  34. Schouveiler L., Chermette F., Flutter instability of freely hanging articulated pipes conveying fluid, Physics of Fluids, 30(3): 034105, 2018, https://doi.org/10.1063/1.5021160.

  35. Sfakiotakis M., Lane D., Davies J., Review of fish swimming modes for aquatic locomotion, IEEE Journal of Oceanic Engineering, 24(2): 237–252, 1999, https://doi.org/10.1109/48.757275.

  36. Smits A.J., Undulatory and oscillatory swimming, Journal of Fluid Mechanics, 874: P1, 2019, https://doi.org/10.1017/jfm.2019.284.

  37. Strefling P.C., Hellum A.M., Mukherjee R., Modeling, simulation, and performance of a synergistically propelled ichthyoid, IEEE/ASME Transactions on Mechatronics, 17(1): 36–45, 2011, https://doi.org/10.1109/IROS.2011.6094934.

  38. Struebig K., Bayat B., Eckert P., Looijestijn A., Lueth T.C., Ijspeert A.J., Design and development of the efficient anguilliform swimming robot – MAR, Bioinspiration & Biomimetics, 15(3): 035001, 2020, https://doi.org/10.1088/1748-3190/ab6be0.

  39. Sugiyama Y., Noda T., Studies on stability of two-degree-of-freedom articulated pipes conveying fluid: Effect of an attached mass and damping, Bulletin of JSME, 24(194): 1354–1362, 1981, https://doi.org/10.1299/jsme1958.24.1354.

  40. Szmidt T., Dynamics of a flutter-excited articulated ichthyoid propulsor, Meccanica, 60(4): 1035–1052, 2025, https://doi.org/10.1007/s11012-025-01974-8.

  41. Szmidt T., Przybyłowicz P., Critical load and non-linear dynamics of Beck’s column with electromagnetic actuators, International Journal of Non-Linear Mechanics, 67: 63–73, 2014, https://doi.org/10.1016/j.ijnonlinmec.2014.08.002.

  42. Triantafyllou M.S., Triantafyllou G.S., An efficient swimming machine, Scientific American, 272(3): 64–70, 1995, http://www.jstor.org/stable/24980373.

  43. Videler J.J., Fish swimming, Springer, Dordrecht, 1993, https://doi.org/10.1007/978-94-011-1580-3.

  44. Yu J., Wang L., Parameter optimization of simplified propulsive model for biomimetic robot fish, [in:] Proceedings of the 2005 IEEE International Conference on Robotics and Automation, pp. 3306–3311, IEEE, 2005, https://doi.org/10.1109/ROBOT.2005.1570620.

  45. Zhong Y., Li Z., Du R., A novel robot fish with wire-driven active body and compliant tail, IEEE/ASME Transactions on Mechatronics, 22(4): 1633–1643, 2017, https://doi.org/10.1109/TMECH.2017.2712820.

  46. Zhou J., Si Y., Chen Y., A review of subsea AUV technology, Journal of Marine Science and Engineering, 11(6): 1119, 2023, https://doi.org/10.3390/jmse11061119.