Abstract
This manuscript proposes a multicriteria approach to the design optimization of adaptive pneumatic impact absorbers. The considered absorber consists of two sealed chambers separated by a piston with an internal valve. Proper valve control affects gas flow between the chambers and ensures a flat reaction force profile over a possibly long piston stroke. The design of such an absorber is defined by three parameters: initial gas pressure, diameter, and length. For a given range of impact conditions, the worst-case maximum deceleration and maximum mass flow rate are used as design criteria in a multicriterial minimization problem. Solutions to this problem provide an optimal balance between impact absorption performance and the technical requirements the valve must meet. An example is considered, which illustrates the Pareto-optimal solutions in the design space and the complex interdependency between initial pressure and absorber diameter at each absorber length. The results demonstrate that a proper choice of design parameters can result in significant performance improvements.
Keywords:
adaptive pneumatic absorbers, impact absorption, design optimization, multi-objective optimization, mass flow rateReferences
- Holnicki-Szulc J., Graczykowski C., Mikułowski G., Mroz A., Pawłowski P., Wiszowaty R., Adaptive impact absorption – The concept and potential applications, International Journal of Protective Structures, 6(2): 357–377, 2015, https://doi.org/10.1260/2041-4196.6.2.357.
- Milecki A., Hauke M., Application of magnetorheological fluid in industrial shock absorbers, Mechanical Systems and Signal Processing, 28: 528–541, 2012, https://doi.org/10.1016/j.ymssp.2011.11.008.
- Willich F., Vrabec J., Holzapfel F., Single action control for oleo-pneumatic shock absorbers in CS-23 aircraft, Aerospace Science and Technology, 161: 110078, 2025, https://doi.org/10.1016/j.ast.2025.110078.
- Kęcik K., Simultaneous vibration mitigation and energy harvesting from a pendulum-type absorber, Communications in Nonlinear Science and Numerical Simulation, 92: 105479, 2021, https://doi.org/10.1016/j.cnsns.2020.105479.
- Graczykowski C., Mathematical models and numerical methods for the simulation of adaptive inflatable structures for impact absorption, Computers and Structures, 174: 3–20, 2016, https://doi.org/10.1016/j.compstruc.2015.06.017.
- Mikułowski G., Wiszowaty R., Holnicki-Szulc J., Characterization of a piezoelectric valve for an adaptive pneumatic shock absorber, Smart Materials & Structures, 22(12): 1–12, 2013, https://doi.org/10.1088/0964-1726/22/12/125011.
- Currey N.S., Aircraft Landing Gear Design: Principles and Practices, American Institute of Aeronautics and Astronautics, Washington, 1988.
- Jurczyński M., Olszewski M., Methods of discrete pneumatic drive control that ensures the shock absorption during the last part of the movement, Pomiary Automatyka Kontrola, 55(3): 209–212, 2009.
- Bajkowski J.M., Bajer C.I., Dyniewicz B., Leonowicz M., Performance of a vibration damper using a new compressible magnetorheological fluid with microspheres, Smart Materials and Structures, 34(1): 015041, 2025, https://doi.org/10.1088/1361-665X/ad9cd7.
- Knap L., Makowski M., Siczek K., Kubiak P., Mrowicki A., Hydraulic vehicle damper controlled by piezoelectric valve, Sensors, 23(4): 2007, 2023, https://doi.org/10.3390/s23042007.
- Makowski M., Knap L., Study of a controlled piezoelectric damper, Sensors, 21(10): 3509, 2021, https://doi.org/10.3390/s21103509.
- Batterbee D.C., Sims N.D., Stanway R., Wołejsza Z., Magnetorheological landing gear: 1. A design methodology, Smart Materials and Structures, 16(6): 2429–2440, 2007, https://doi.org/10.1088/0964-1726/16/6/046.
- Moerman F., Dewulf S., Hygiene control in the application of compressed air and food gases, [in:] Hygiene in Food Processing, Lelieveld H.L.M., Holah J.T., Napper D. [Eds.], 2nd ed., pp. 203–255, Woodhead Publishing, 2014, https://doi.org/10.1533/9780857098634.2.203.
- Stoll K., Halama H., Pneumatic shock absorber, US Patent 5,069,317, 12/1991.
- Aginex, Oil-free air [in Polish: Powietrze bezolejowe], Pneumatyka, 82(1): 7–11, 2012.
- Rochowicz M., Developing systems with technical cleanliness requirements – constraints and new approaches, [in:] 23. Internationales Stuttgarter Symposium, Kulzer A.C., Reuss H.C., Wagner A. [Eds], pp. 111–122, Springer Fachmedien, Wiesbaden, 2023, https://doi.org/10.1007/978-3-658-42236-3_9.
- Chai S.T., Mason W.H., Landing gear integration in aircraft conceptual design, Technical Report MAD 96-09-01, Virginia Polytechnic Institute and State University, Blacksburg, 1997.
- Pons J.L., Emerging Actuator Technologies: A Micromechatronic Approach, John Wiley & Sons, Chichester, 2005.
- Niculescu A.I., VZN. A New Damper Concept, BREN, Bucharest, 2010.
- Makowski M., Zalewski R., Vibration analysis for vehicle with vacuum packed particles suspension, Journal of Theoretical and Applied Mechanics, 53(1): 109–117, 2015, https://doi.org/10.15632/jtam-pl.53.1.109.
- Kr¨uger W., Integrated design process for the development of semi-active landing gears for transport aircraft, PhD thesis, Institute of Flight Mechanics and Flight Control, University of Stuttgart, Hannover, 2000.
- Wang H., Xing J.T., Price W.G., Li W., An investigation of an active landing gear system to reduce aircraft vibrations caused by landing impacts and runway excitations, Journal of Sound and Vibration, 317(1): 50–66, 2008, https://doi.org/10.1016/j.jsv.2008.03.016.
- McGehee J.R., Morris D.L., Active control landing gear for ground load alleviation, [in:] AGARD Conference Proceedings, FMP Symposium, Toronto, 1984.
- Mikułowski G.M., Adaptive impact absorbers based on magnetorheological fluids, PhD thesis, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2008.
- Jiang P., Wang L., Yang T., Yang Z., Deep learning assisted semi-active control of magnetorheological buffer landing gear, [in:] Proceedings of the International Congress on Sound and Vibration (ICSV 2024), van Keulen W., Kok J. [Eds], no. 202655, Society of Acoustics, Amsterdam, 2024.
- Le Q.N., Park H.M., Kim Y., Pham H.H., Hwang J.H., Luong Q.V., An intelligent control and a model predictive control for a single landing gear equipped with a magnetorheological damper, Aerospace, 10(11): 951, 2023, https://doi.org/10.3390/aerospace10110951.
- Graczykowski C., Inflatable structures for adaptive impact absorption, PhD thesis, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2012.
- Faraj R., Mikułowski G., Wiszowaty R., Study on the state-dependent path-tracking for smart pneumatic shock-absorber, Smart Materials and Structures, 29(11): 115008, 2020, https://doi.org/10.1088/1361-665X/ab9adc.
- Graczykowski C., Faraj R., Extended identification-based predictive control for adaptive impact mitigation, Bulletin of the Polish Academy of Sciences Technical Sciences, 71(4): e145937, 2023, https://doi.org/10.24425/bpasts.2023.145937.
- Graczykowski C., Faraj R., Adaptive impact mitigation based on predictive control with equivalent mass identification, Sensors, 23(3): 9471, 2023, https://doi.org/10.3390/s23239471.
- Faraj R., Popławski B., Gabryel D., Mikułowski G., Wiszowaty R., On optimization of an adaptive pneumatic impact absorber – The innovative rescue cushion, Bulletin of the Polish Academy of Sciences Technical Sciences, 73(3): e153436, 2025, https://doi.org/10.24425/bpasts.2025.153436.
- Wiszowaty R., Design and testing of adaptive pneumatic impact energy absorbers [in Polish: Projektowanie i badanie adaptacyjnych pneumatycznych absorberow energii uderzenia], PhD thesis, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 2016.
- Kęcik K., Brzeski P., Perlikowski P., Non-linear dynamics and optimization of a harvester-absorber system, International Journal of Structural Stability and Dynamics, 17(5): 1740001, 2017, https://doi.org/10.1142/S0219455417400016.
- Matsuhashi A., Shock absorber, US Patent 6,547,045, B2, 04/2003.
- Antonovsky Y., High frequency shock absorber and accelerator, US Patent 6,454,061,B1, 09/2002.
- Sekuła K., Graczykowski C., Holnicki-Szulc J., On-line impact load identification, Shock and Vibration, 20(1): 147908, 2013, https://doi.org/10.3233/SAV-2012-0732.

