The Development of Green Polylactic Acid (PLA)Composites for Wastewater Treatment – A Review
Abstract
Polylactic acid (PLA) is a biodegradable polyester derived from renewable resources, recognized for its environmental sustainability and versatile properties. Its applications spam the biomedical, textile, and packaging industries and, more recently, wastewater treatment. This review explores recent advancements in the use of PLA and its composites for wastewater treatment, emphasizing their effectiveness, modification techniques to enhance performance, and future research directions. A thorough literature review was conducted, covering the past decade studies, and, including research articles, reviews, and case studies on PLA’s application in wastewater treatment and comparative performance against other adsorbents. Although PLA’s natural adsorption capacity is limited, it has demonstrated significant potential for removing contaminants such as heavy metals, organic dyes, and other organic pollutants. Various modifications, including surface chemical changes, physical blending with nanomaterials, and more, have notably improved its adsorption performance. Modified PLA composites thus present a viable and sustainable solution for wastewater treatment. Continued research is essential to further optimize these modifications, explore novel composite materials, develop scalable technologies, and assess long-term environmental impacts. This review offers a critical synthesis of current knowledge on PLA-based materials in wastewater treatment, aiming to inform and guide future research in sustainable water purification technologies.
Keywords:
polylactic acid , PLA, wastewater treatment, adsorbents, adsorption, PLA composites, environmental sustainabilityReferences
- Yadav N., Nain L., Khare S.K., Studies on the degradation and characterization of a novel metal-free polylactic acid synthesized via lipase-catalyzed polymerization: A step towards curing the environmental plastic issue, Environmental Technology & Innovation, 24: 101845, 2021, https://doi.org/10.1016/j.eti.2021.101845.
- Liparoti S., Iozzino V., Speranza V., Pantani R., Modulating poly(lactic acid) degradation rate for environmentally sustainable applications, Waste Management, 175: 215–224, 2024, https://doi.org/10.1016/j.wasman.2024.01.004.
- Wang J., Modification and applications of polylactic acid, Highlights in Science, Engineering and Technology, 84: 14–18, 2024, https://doi.org/10.54097/6syqkz26.
- Ferreira P.S., Ribeiro S.M., Pontes R., Nunes J., Production methods and applications of bioactive polylactic acid: A review, Environmental Chemistry Letters, 22: 1831–1859, 2024, https://doi.org/10.1007/s10311-024-01729-z.
- Vakati S.R., Vanderlaan G., Gacura M.D., Ji X., Chen L., Piovesan D., Synthesis of poly-lactic acid by ring open polymerization from beer spent grain for drug delivery, Polymers (Basel), 16: 483, 2024, https://doi.org/10.3390/polym16040483.
- Widjaja T., Hendrianie N., Nurkhamidah S., Altway A., Yusuf B., F. F., Rohma A.A.Z., Pahlevi A., Poly lactic acid production using the ring opening polymerization (ROP) method using Lewis acid surfactant combined iron (Fe) catalyst (Fe(DS)3), Heliyon, 9(8): e17985, 2023, https://doi.org/10.1016/j.heliyon.2023.e17985.
- Wu Y., Gao X., Wu J., Zhou T., Nguyen T.T., Wang Y., Biodegradable polylactic acid and its composites: Characteristics, processing, and sustainable applications in sports, Polymers (Basel), 15: 3096, 2023, https://doi.org/10.3390/polym15143096.
- Giammaria V., Capretti M., Del Bianco G., Boria S., Santulli C., Application of poly(lactic acid) composites in the automotive sector: A critical review, Polymers (Basel), 16: 3059, 2024, https://doi.org/10.3390/polym16213059.
- Hussain M., Khan S.M., Shafiq M., Abbas N., A review on PLA-based biodegradable materials for biomedical applications, Giant, 18: 100261, 2024, https://doi.org/10.1016/j.giant.2024.100261.
- Khouri N.G., Bahú J.O., Blanco-Llamero C., Severino P., Concha V.O.C., Souto E.B., Polylactic acid (PLA): Properties, synthesis, and biomedical applications – A review of the literature, Journal of Molecular Structure, 1309: 138243, 2024, https://doi.org/10.1016/j.molstruc.2024.138243.
- Yang Y., Zhang M., Ju Z., Tam P.Y., Hua T., Younas M.W., Kamrul H., Hu H., Poly(lactic acid) fibers, yarns and fabrics: Manufacturing, properties and applications, Textile Research Journal, 91(13–14): 1641–1669, 2021, https://doi.org/10.1177/0040517520984101.
- Pandey A.K., Sirohi R., Upadhyay S., Mishra M., Kumar V., Singh L.K., Pandey A., Production and applications of polylactic acid, [in:] Binod P., Raveendran S., Pandey A. [Eds.], Biomass, Biofuels, Biochemicals. Biodegradable Polymers and Composites – Process Engineering to Commercialization, Elsevier, pp. 309–357, 2021, https://doi.org/10.1016/B978-0-12-821888-4.00013-7.
- Swetha T.A., Bora A., Mohanrasu K., Balaji P., Raja R., Ponnuchamy K., Muthusamy G., Arun A., A comprehensive review on polylactic acid (PLA) – Synthesis, processing and application in food packaging, International Journal of Biological Macromolecules, 234: 123715, 2023, https://doi.org/10.1016/j.ijbiomac.2023.123715.
- da Silva P.C.J., Klug T.V., Stoll L., Izidoro F., Flores S.H., De Oliveira Rios A., Poly (lactic acid) and its improved properties by some modifications for food packaging applications: A review, Food Packaging and Shelf Life, 41: 101230, 2024, https://doi.org/10.1016/j.fpsl.2023.101230.
- Andrzejewski J., Das S., Lipik V., Mohanty A.K., Misra M., You X., Tan L.P., Chang B.P., The development of poly(lactic acid) (PLA)-based blends and modification strategies: methods of improving key properties towards technical applications – Review, Materials (Basel), 17: 4556, 2024, https://doi.org/10.3390/ma17184556.
- Hu C., Zhang Y., Pang X., Chen X., Poly(lactic acid): Recent stereochemical advances and new materials engineering, Advanced Materials, 37(22): 2412185, 2024, https://doi.org/10.1002/adma.202412185.
- Milovanovic S., Markovic D., Pantic M., Pavlovic S.M., Knapczyk-Korczak J., Stachewicz U., Novak Z., Development of advanced floating poly(lactic acid)-based materials for colored wastewater treatment, The Journal of Supercritical Fluids, 177: 105328, 2021, https://doi.org/10.1016/j.supflu.2021.105328.
- Manewal S., Patadiya J., Kandasubramanian B., Mahajan-Tatpate P., Additive manufactured membranes of polylactic acid for effluent treatment, Polymer-Plastics Technology and Materials, 62: 1587–1609, 2023, https://doi.org/10.1080/25740881.2023.2222825.
- Darwin, Triovanta U., Rinaldi R., Two-stage anaerobic co-digestion of landfill leachate and starch wastes using anaerobic biofilm reactor for methane production, Progress in Agricultural Engineering Sciences, 15(1): 53–70, 2019, https://doi.org/10.1556/446.15.2019.1.4.
- Darwin, Diana N., Mardhotillah, Pratama A., Anaerobic co-digestion of cow manure and palm oil mill effluent (POME): Assessment of methane production and biodegradation efficiency, International Journal of Design & Nature and Ecodynamics, 16(6): 671–676, 2021, https://doi.org/10.18280/ijdne.160608.
- Darwin, Pratama A., Mardhotillah, Organic waste conversion via continuous anaerobic co-digestion of oil palm empty fruit bunches and cow manure: Evaluation of feeding regime on methane production, Acta Technologica Agriculturae, 24(1): 8–13, 2021, https://doi.org/10.2478/ata-2021-0002.
- Darwin, Ilham M., Fazil A., Performance and kinetic study of the anaerobic co-digestion of cocoa husk and digested cow manure with high organic loading rate, INMATEH – Agricultural Engineering, 55(2): 131–140, 2018.
- Okoro H.K., Orosun M.M., Oriade F.A., Momoh-Salami T.M., Ogunkunle C.O., Adeniyi A.G., Zvinowanda C., Ngila J.C., Potentially toxic elements in pharmaceutical industrial effluents: A review on risk assessment, treatment, and management for human health, Sustainability, 15: 86974, 2023, https://doi.org/10.3390/su15086974.
- Darwin, Mardhotillah, Pratama A. Anaerobic co-digestion of oil palm frond waste with cow manure for biogas production: influence of a stepwise organic loading on the methane productivity, Bulletin of the Transilvania University of Brasov, Series II: Forestry, Wood Industry, Agricultural Food Engineering, 14(63)(2): 99–112, 2021, https://doi.org/10.31926/but.fwiafe.2021.14.63.2.9.
- Thuan N.C., Phat V.V., Thai Hang T.T., Luu L.E.T., Tripple J., Wagner M., Treatment of seafood processing wastewater toward carbon neutrality: A comparison between coagulation/flocculation, chemical oxidation and absorbent methods, Case Studies in Chemical and Environmental Engineering, 10: 100792, 2024, https://doi.org/10.1016/j.cscee.2024.100792.
- Jo S., Kadam R., Jang H., Seo D., Park J., Recent advances in wastewater electrocoagulation technologies: Beyond chemical coagulation, Energies, 17: 5863, 2024, https://doi.org/10.3390/en17235863.
- Aryanti P.T.P., Nugroho F.A., Anwar N., Rusgiyarto F., Phalakornkule C., Kadier A., Integrated bipolar electrocoagulation and PVC-based ultrafiltration membrane process for palm oil mill effluent (POME) treatment, Chemosphere, 347: 140637, 2024, https://doi.org/10.1016/j.chemosphere.2023.140637.
- Shah A.A., Walia S., Kazemian H., Advancements in combined electrocoagulation processes for sustainable wastewater treatment: A comprehensive review of mechanisms, performance, and emerging applications, Water Research, 252: 121248, 2024, https://doi.org/10.1016/j.watres.2024.121248.
- Al-Qodah Z., Al-Zghoul T.M., Jamrah A., The performance of pharmaceutical wastewater treatment system of electrocoagulation assisted adsorption using perforated electrodes to reduce passivation, Environmental Science and Pollution Research, 31: 20434–20448, 2024, https://doi.org/10.1007/s11356-024-32458-z.
- Faraj H., Jamrah A., Al-Omari S., Al-Zghoul T.M., Optimization of an electrocoagulation-assisted adsorption treatment system for dairy wastewater, Case Studies in Chemical and Environmental Engineering, 9: 100574, 2024, https://doi.org/10.1016/j.cscee.2023.100574.
- Madeira L., Carvalho F., Almeida A., Ribau Teixeira M., Integrated process of immediate one-step lime precipitation, atmospheric carbonation, constructed wetlands, or adsorption for industrial wastewater treatment: A review, Water, 15(22): 3929, 2023, https://doi.org/10.3390/w15223929.
- Jin H., Yu Y., Chen X., Electrochemical precipitation for water and wastewater treatment, Process Safety and Environmental Protection, 184: 1011–1016, 2024, https://doi.org/10.1016/j.psep.2024.02.044.
- Chen H., Hou D., Zhan L., Li Z., Zheng S., Li F., Chen H., Wu H., Yang L., A demonstration project for desulfurization wastewater evaporation technology: Field test and performance analysis, Journal of Water Process Engineering, 53: 103874, 2023, https://doi.org/10.1016/j.jwpe.2023.103874.
- Wang Y., Zhan L., Chen H., Mao J., Chen H., Ma X., Yang L., Study on the evaporation performance of concentrated desulfurization wastewater and its products analysis, Journal of Water Process Engineering, 58: 104862, 2024, https://doi.org/10.1016/j.jwpe.2024.104862.
- Oturan N., Oturan M.A., Fenton-related advanced oxidation processes (AOPs) for water treatment, [in:] Jlassi K., Oturan M.A., Ismail A.F., Chehimi M.M. [Eds.], Advanced Materials for Wastewater Treatment, Cham: Springer International Publishing, pp. 117–143, 2024, https://doi.org/10.1007/978-3-031-48228-1_9.
- Darwin, Pratama A., Mardhotillah, Biodiesel production from waste frying oils by potassium methoxide supported on activated carbon catalysts from lignocellulosic biomass, Acta Technologica Agriculturae, 24(4): 153–158, 2021, https://doi.org/10.2478/ata-2021-0026.
- Darwin D., Rapid determination of lactic acid in anaerobic biological treatment process using a portable sensitive lactate biosensor, Biotechnologia, 100(2): 115–120, 2019, https://doi.org/10.5114/bta.2019.85320.">https://doi.org/10.5114/bta.2019.85320..
- Darwin, Determination of glucose concentration in anaerobic acidification cultures by portable glucose monitoring system, Asian Journal of Chemistry, 31(4): 763–766, 2019, https://doi.org/10.14233/ajchem.2019.21593.">https://doi.org/10.14233/ajchem.2019.21593..
- Nthwane Y.B., Fouda-Mbanga B.G., Thwala M., Pillay K., A comprehensive review of heavy metals (Pb2+, Cd2+, Ni2+) removal from wastewater using low-cost adsorbents and possible revalorisation of spent adsorbents in blood fingerprint application, Environmental Technology, 46(3): 414–430, 2025, https://doi.org/10.1080/09593330.2024.2358450.
- Lichtmannegger T., Hell M., Wehner M., Ebner C., Bockreis A., Seasonal tourism’s impact on wastewater composition: Evaluating the potential of alternating activated adsorption in primary treatment, Science of the Total Environment, 926: 171869, 2024, https://doi.org/10.1016/j.scitotenv.2024.171869.
- Ghosh S., Malloum A., Bornman C., Othmani A., Osagie C., Esfahani Z.K., Khanday W.A., Ahmadi S., Dehghani M.H., Novel green adsorbents for removal of aniline from industrial effluents: A review, Journal of Molecular Liquids, 345: 118167, 2022, https://doi.org/10.1016/j.molliq.2021.118167.
- Kurniawan T.A., Lo W-H., Liang X., Goh H.H., Othman M.H.D., Chong K-K., Mohyuddin A., Kern A.O., Chew K.W., Heavy metal removal from aqueous solutions using biomaterials and/or functional composites: Recent advances and the way forward in wastewater treatment using digitalization. Journal of Composites Science, 7(2): 84, 2023, https://doi.org/10.3390/jcs7020084.
- Fathana H., Rahmi R., Adlim M., Lubis S., Modification of chitosan using glycidyl methacrylate-grafted cellulose (GMAgCell/Chi) for methylene blue adsorption, Karbala International Journal of Modern Science, 9: 687–697, 2023, https://doi.org/10.33640/2405-609X.3322.
- Rahmi, Zulasma M.A., Lelifajri, Kacaribu A.A., Preparation of chitosan-glycidyl methacrylate grafted rice straw cellulose (Chi/GMAgCell) composite film for cadmium ions removal from water, International Journal of Design & Nature and Ecodynamics, 20(3): 515–522, 2025, https://doi.org/10.18280/ijdne.200306.
- Fathana H., Rahmi, Adlim M., Lubis S., Iqhrammullah M., Sugarcane bagasse-derived cellulose as an eco-friendly adsorbent for azo dye removal, International Journal of Design & Nature and Ecodynamics, 18(1): 11–20, 2023, https://doi.org/10.18280/ijdne.180102.
- Azimi B., Sepahvand S., Ismaeilimoghadam S., Kargarzadeh H., Ashori A., Jonoobi M., Danti S., Application of cellulose-based materials as water purification filters; A state-of-the-art review. Journal of Polymers and the Environment, 32: 345–366, 2024, https://doi.org/10.1007/s10924-023-02989-6.
- Liang H., Wu H., Fang W., Ma K., Zhao X., Geng Z., She D., Hu H., Two-stage hydrothermal oxygenation for efficient removal of Cr(VI) by starch-based polyporous carbon: Wastewater application and removal mechanism, International Journal of Biological Macromolecules, 264: 130812, 2024, https://doi.org/10.1016/j.ijbiomac.2024.130812.
- Costa T.B., Matias P.M.C., Sharma M., Murtinho D., Rosa D.S., Valente A.J.M., Recent advances on starch-based adsorbents for heavy metal and emerging pollutant remediation, Polymers, 17(1): 15, 2025, https://doi.org/10.3390/polym17010015.
- Yadav K.K., Cabral-Pinto M.M.S., Gacem A., Fallatah A.M., Ravindran B., Rezania S., Algethami J.S., Eltayeb L.B., Abbas M., Al-shareef T.H., Vinayak V., Son C.T., Alreshidi M.A., Rodríguez-Díaz J.M., Homod R.Z., Recent advances in the application of nanoparticle-based strategies for water remediation as a novel clean technology – A comprehensive review, Materials Today Chemistry, 40: 102226, 2024, https://doi.org/10.1016/j.mtchem.2024.102226.
- Tripathy J., Mishra A., Pandey M., Thakur R.R., Chand S., Rout P.R., Shahid M.K., Advances in nanoparticles and nanocomposites for water and wastewater treatment: A review, Water, 16(11): 1481, 2024, https://doi.org/10.3390/w16111481.
- Thomas M.S., Pillai P.K.S., Faria M., Cordeiro N., Kailas L., Kalarikkal N., Thomas S., Pothen L.A., Polylactic acid/nano chitosan composite fibers and their morphological, physical characterization for the removal of cadmium(II) from water, Journal of Applied Polymer Science, 137: 48993, 2020, https://doi.org/10.1002/app.48993.
- Cairone S., Hegab H.M., Khalil H., Nassar L., Wadi V.S., Naddeo V., Hasan S.W., Novel eco-friendly polylactic acid nanocomposite integrated membrane system for sustainable wastewater treatment: Performance evaluation and antifouling analysis, Science of the Total Environment, 912: 168715, 2024, https://doi.org/10.1016/j.scitotenv.2023.168715.
- Dong Y., Ghasemzadeh M., Khorsandi Z., Sheibani R., Nasrollahzadeh M., Starch-based hydrogels for environmental applications: A review, International Journal of Biological Macromolecules, 269: 131956, 2024, https://doi.org/10.1016/j.ijbiomac.2024.131956.
- Younes M.K., Algburi S., Al Omari R.H., Abdulhameed A.S., Application of chitosan/acid-treated biomass composite for dye wastewater treatment: Adsorption modeling using Box-Behnken Design, Desalination and Water Treatment, 320: 100795, 2024, https://doi.org/10.1016/j.dwt.2024.100795.
- Abdulhameed A.S., Khan M.K.A., Alshahrani H., Younes M.K., Algburi S., Newly developed polymer nanocomposite of chitosan-citrate/ZrO2 nanoparticles for safranin O dye adsorption: Physiochemical properties and response surface methodology, Materials Chemistry and Physics, 324: 129699, 2024, https://doi.org/10.1016/j.matchemphys.2024.129699.
- Darmenbayeva A., Rajasekharan R., Massalimova B., Bektenov N., Taubayeva R., Bazarbaeva K., Kurmanaliev M., Mukazhanova Z., Nurlybayeva A., Bulekbayeva K., Kabylbekova A., Ungarbayeva A., Cellulose-based sorbents: A comprehensive review of current advances in water remediation and future prospects, Molecules, 29: 5969, 2024, https://doi.org/10.3390/molecules29245969.
- Jin F-L., Hu R-R., Park S-J., Improvement of thermal behaviors of biodegradable poly(lactic acid) polymer: A review, Composites Part B: Engineering, 164: 287–296, 2019, https://doi.org/10.1016/j.compositesb.2018.10.078.
- Ng K.M.P., Tan I.S., Foo H.C.Y., Lau J.S.Y., Lam M.K., Wong M.K., Durable polylactic acid bionanocomposites with biomass-derived nanocellulose additives: Recent advances in production, Journal of the Taiwan Institute of Chemical Engineers, 149: 105774, 2024, https://doi.org/10.1016/j.jtice.2024.105774.
- Ghadhban M.Y., Rashid K.T., Abdulrazak A.A., Ibrahim I.T., Alsalhy Q.F., Shakor Z.M., Hamawand I., Modification of polylactide-poly(butylene adipate-co-terephthalate) (PLA/PBAT) mixed-matrix membranes (MMMs) with green banana peel additives for oil wastewater treatment, Water, 16: 1040, 2024, https://doi.org/10.3390/w16071040.
- Iyyappan J., Gaddala B., Gnanasekaran R., Gopinath M., Yuvaraj D., Kumar V., Critical review on wastewater treatment using photocatalytic advanced oxidation process: Role of photocatalytic materials, reactor design and kinetics, Case Studies in Chemical and Environmental Engineering, 9: 100599, 2024, https://doi.org/10.1016/j.cscee.2023.100599.
- Chen G-Y., Yang T-L., Wang Y-H., Li S-H., Chen Y., Properties enhancement of antimicrobial chitosan-deposited polylactic acid films via cold plasma treatment, Food and Health, 5: 11, 2023, https://doi.org/10.53388/FH2023011.
- Li L., He Z., Song Z., Sheng T., Dong Z., Zhang F., Ma F., A novel strategy for rapid formation of biofilm: Polylactic acid mixed with bioflocculant modified carriers, Journal of Cleaner Production, 374: 134023, 2022, https://doi.org/10.1016/j.jclepro.2022.134023.
- Park S.S., Lee Y.S., Lee S.W., Repo E., Kim T.H., Park Y., Hwang Y., Facile surface treatment of 3D-printed PLA filter for enhanced graphene oxide doping and effective removal of cationic dyes, Polymers, 15(2): 1–19, 2023, https://doi.org/10.3390/polym15020269.
- Cheng Y., Deng S., Chen P., Ruan R., Polylactic acid (PLA) synthesis and modifications: A review, Frontiers of Chemistry in China, 4: 259–264, 2009, https://doi.org/10.1007/s11458-009-0092-x.
- Andrade-Guel M., Cabello-Alvarado C., Romero-Huitzil R.L., Rodríguez-Fernández O.S., Ávila-Orta C.A., Cadenas-Pliego G., Medellín-Banda D.I., Gallardo-Vega C., Cepeda-Garza J., Nanocomposite PLA/C20A nanoclay by ultrasound-assisted melt extrusion for adsorption of uremic toxins and methylene blue dye, Nanomaterials, 11: 2477, 2021, https://doi.org/10.3390/nano11102477.
- Aijaz M.O., Yang S.B., Karim M.R., Alnaser I.A., Alahmari A.D., Almubaddel F.S., Assaifan A.K., Preparation and characterization of electrospun poly(lactic acid)/poly(ethylene glycol)–b–poly(propylene glycol)–b–poly(ethylene glycol)/silicon dioxide nanofibrous adsorbents for selective copper (II) ions removal from wastewater, Membranes, 13(1): 54, 2023, https://doi.org/10.3390/membranes13010054.
- Ampawan S., Dairoop J., Keawbanjong M., Chinpa W., A floating biosorbent of polylactide and carboxylated cellulose from biomass for effective removal of methylene blue from water, International Journal of Biological Macromolecules, 266: 131354, 2024, https://doi.org/10.1016/j.ijbiomac.2024.131354.
- Nouri A., Ang W.L., Mahmoudi E., Chua S.F., Mohammad A.W., Benamor A., Ba-Abbad M.M., Leo C.P., Decoration of polylactic acid on graphene oxide for efficient adsorption of methylene blue and tetracycline, Chemosphere, 322: 138219, 2023, https://doi.org/10.1016/j.chemosphere.2023.138219.
- John R.P., Anisha G.S., Nampoothiri K.M., Pandey A., Direct lactic acid fermentation: Focus on simultaneous saccharification and lactic acid production, Biotechnology Advances, 27: 145–152, 2009, https://doi.org/10.1016/j.biotechadv.2008.10.004.
- Kompanje E.J.O., Jansen T.C., Van Der Hoven B., Bakker J., The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814–1869) in January 1843, Intensive Care Medicine, 33: 1967–1971, 2007, https://doi.org/10.1007/s00134-007-0788-7.
- Swetha T.A., Ananthi V., Bora A., Sengottuvelan N., Ponnuchamy K., Muthusamy G., Arun A., A review on biodegradable polylactic acid (PLA) production from fermentative food waste – Its applications and degradation, International Journal of Biological Macromolecules, 234: 123703, 2023, https://doi.org/10.1016/j.ijbiomac.2023.123703.
- Li Y., Bhagwat S.S., Cortés-Penã Y.R., Ki D., Rao C V., Jin Y.S., Guest J.S., Sustainable lactic acid production from lignocellulosic biomass, ACS Sustainable Chemistry & Engineering, 9: 1341–1351, 2021, https://doi.org/10.1021/acssuschemeng.0c08055.
- Ojo A.O., De Smidt O., Lactic acid: A comprehensive review of production to purification, Processes, 11: 688, 2023, https://doi.org/10.3390/pr11030688.
- Dana R.H., Ebrahimi F., Synthesis, properties, and applications of polylactic acid‐based polymers, Polymer Engineering & Science, 63: 22–43, 2023, https://doi.org/10.1002/pen.26193.
- Castañeda-Rodríguez S., González-Torres M., Ribas-Aparicio R.M., Del Prado‑Audelo M.L., Leyva‑Gómez G., Gürer E.S., Sharifi-Rad J., Recent advances in modified poly (lactic acid) as tissue engineering materials, Journal of Biological Engineering, 17: 21, 2023, https://doi.org/10.1186/s13036-023-00338-8.
- Darwin, Triovanta U., Rinaldi R., Pratama A., Anaerobic acidification of coconut water waste by Lactobacillus acidophilus culture for biotechnological production of lactic acid, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67(6): 1433–1440, 2019, https://doi.org/10.11118/actaun201967061433.
- Kacaribu A.A., Darwin D., Biotechnological lactic acid production from low-cost renewable sources via anaerobic microbial processes, BioTechnologia, 105: 179–194, 2024, https://doi.org/10.5114/bta.2024.139757.
- Molina S.G.E., Shetty R., Xiao H., Wätjen A.P., Tovar M., Bang-Berthelsen C.H., Development of a novel lactic acid bacteria starter culture approach: From insect microbiome to plant-based fermentations, LWT – Food Science and Technology, 167: 113797, 2022, https://doi.org/10.1016/j.lwt.2022.113797.
- Hofvendahl K., Hahn-Hägerdal B., Factors affecting the fermentative lactic acid production from renewable resources, Enzyme and Microbial Technology, 26: 87–107, 2000, https://doi.org/10.1016/S0141-0229(99)00155-6.
- Ashaolu T.J., Reale A., A holistic review on Euro-Asian lactic acid bacteria fermented cereals and vegetables, Microorganisms, 8: 1176, 2020, https://doi.org/10.3390/microorganisms8081176.
- Teneva-Angelova T., Hristova I., Pavlov A., Beshkova D., Lactic acid bacteria – from nature through food to health, [in:] Advances in Biotechnology for Food Industry, vol. 14, Elsevier, pp. 91–133, 2018, https://doi.org/10.1016/B978-0-12-811443-8.00004-9.
- Castillo Martinez F.A., Balciunas E.M., Salgado J.M., Domínguez González J.M., Converti A., de Souza Oliveira R.P., Lactic acid properties, applications and production: A review, Trends in Food Science & Technology, 30: 70–83, 2013, https://doi.org/10.1016/j.tifs.2012.11.007.
- Kacaribu A.A., Darwin, Sustainable bioproduct production via anaerobic bioconversion by landfill soil inoculum in various carbohydrate wastes, Acta Technologica Agriculturae, 27: 61–68, 2024, https://doi.org/10.2478/ata-2024-0009.
- Kacaribu A.A., Darwin D., Aisyah Y., Febriani F., Anaerobic bio-processing of agricultural waste for the biotechnological production of lactic acid and volatile fatty acid by landfill soil inoculums, Research in Agricultural Engineering, 71: 10–21, 2025, https://doi.org/10.17221/52/2024-RAE.
- Alves de Oliveira R., Komesu A., Vaz Rossell C.E., Maciel Filho R., Challenges and opportunities in lactic acid bioprocess design – from economic to production aspects, Biochemical Engineering Journal, 133: 219–239, 2018, https://doi.org/10.1016/j.bej.2018.03.003.
- Tarraran L., Mazzoli R., Alternative strategies for lignocellulose fermentation through lactic acid bacteria: The state of the art and perspectives, FEMS Microbiology Letters, 365(15): fny126, 2018, https://doi.org/10.1093/femsle/fny126.
- Li C., Gao M., Zhu W., Wang N., Ma X., Wu C., Wang Q., Recent advances in the separation and purification of lactic acid from fermentation broth, Process Biochemistry, 104: 142–151, 2021, https://doi.org/10.1016/j.procbio.2021.03.011.
- Huang X., Su S., Xu Z., Miao Q., Li W., Wang L., Advanced composite materials for structure strengthening and resilience improvement, Buildings, 13: 2406, 2023, https://doi.org/10.3390/buildings13102406.
- Mandala R., Hegde G., Kodali D., Kode V.R., From waste to strength: Unveiling the mechanical properties of peanut-shell-based polymer composites, Journal of Composites Science, 7: 307, 2023, https://doi.org/10.3390/jcs7080307.
- Phiri R., Mavinkere Rangappa S., Siengchin S., Oladijo O.P., Ozbakkaloglu T., Advances in lightweight composite structures and manufacturing technologies: A comprehensive review, Heliyon, 10: e39661, 2024, https://doi.org/10.1016/j.heliyon.2024.e39661.
- Sanjay M.R., Madhu P., Jawaid M., Senthamaraikannan P., Senthil S., Pradeep S., Characterization and properties of natural fiber polymer composites: A comprehensive review, Journal of Cleaner Production, 172: 566–581, 2018, https://doi.org/10.1016/j.jclepro.2017.10.101.
- González-López M.E., Martín Del Campo A.S., Robledo-Ortíz J.R., Arellano M., Pérez-Fonseca A.A., Accelerated weathering of poly(lactic acid) and its biocomposites: A review, Polymer Degradation and Stability, 179: 109290, 2020, https://doi.org/10.1016/j.polymdegradstab.2020.109290.
- Sreekumar K., Bindhu B., Veluraja K., Perspectives of polylactic acid from structure to applications, Polymers from Renewable Resources, 12: 60–74, 2021, https://doi.org/10.1177/20412479211008773.
- Rajeshkumar G., Arvindh Seshadri S., Devnani G.L., Sanjay M.R., Siengchin S., Prakash Maran J., Al-Dhabi N.A., Karuppiah P., Mariadhas V.A., Sivarajasekar N., Ronaldo Anuf A., Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review, Journal of Cleaner Production, 310: 127483, 2021, https://doi.org/10.1016/j.jclepro.2021.127483.
- Luo F., Fortenberry A., Ren J., Qiang Z., Recent progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement, Frontiers in Chemistry, 8: 1–8, 2020, https://doi.org/10.3389/fchem.2020.00688.
- Ali W., Ali H., Gillani S., Zinck P., Souissi S., Polylactic acid synthesis, biodegradability, conversion to microplastics and toxicity: A review, Environmental Chemistry Letters, 21: 1761–1786, 2023, https://doi.org/10.1007/s10311-023-01564-8.
- Jacob J., Linson N., Mavelil-Sam R., Maria H.J., Pothan L.A., Thomas S., Kabdrakhmanova S., Laroze D., Poly(lactic acid)/nanocellulose biocomposites for sustainable food packaging, Cellulose, 31: 5997–6042, 2024, https://doi.org/10.1007/s10570-024-05975-w.
- Huang Y., Wang Y., Wen J., A study on modification of polylactic acid and its biomedical application, E3S Web of Conferences, 308: 02008, 2021, https://doi.org/10.1051/e3sconf/202130802008.
- Trivedi A.K., Gupta M.K., Singh H., PLA-based biocomposites for sustainable products: A review, Advanced Industrial and Engineering Polymer Research, 6: 382–395, 2023, https://doi.org/10.1016/j.aiepr.2023.02.002.
- Panicker A.M., Rajesh K.A., Varghese T.O., Mixed morphology nanocrystalline cellulose from sugarcane bagasse fibers/poly(lactic acid) nanocomposite films: Synthesis, fabrication and characterization, Iranian Polymer Journal, 26: 125–136, 2017, https://doi.org/10.1007/s13726-017-0504-6.
- Dhar P., Tarafder D., Kumar A., Katiyar V., Thermally recyclable polylactic acid/cellulose nanocrystal films through reactive extrusion process, Polymer, 87: 268–282, 2016, https://doi.org/10.1016/j.polymer.2016.02.004.
- Yu F., Fei X., He Y., Li H., Poly(lactic acid)-based composite film reinforced with acetylated cellulose nanocrystals and ZnO nanoparticles for active food packaging, International Journal of Biological Macromolecules, 186: 770–779, 2021, https://doi.org/10.1016/j.ijbiomac.2021.07.097.
- Liu H., Research progress in the synthesis and modification of polylactic acid, Highlights in Science, Engineering and Technology, 84: 35–41, 2024, https://doi.org/10.54097/bbrt6j09.
- Lai Z., Cui Y., Gao P., Chen X., Modified PLA carrier material and its performance in immobilization of nitrifying bacteria, Materials Science Forum, 610–613: 198–201, 2009, https://doi.org/10.4028/www.scientific.net/MSF.610-613.198.
- Polishchuk L.M., Kozakevych R.B., Kusyak A.P., Tertykh V.A., Tkachenko O., Strømme M., Budnyak T.M., In situ ring-opening polymerization of L-lactide on the surface of pristine and aminated silica: synthesis and metal ions extraction, Polymers, 14, 2022, https://doi.org/10.3390/polym14224995.
- Fathy R., Ragab E., Ali K.A., New polymeric matrix of polylactic acid/sodium alginate/carbon nanoparticles (PLA/SA/CNP) for efficient removal of methylene blue, Chemical Papers, 77: 6203–6216, 2023, https://doi.org/10.1007/s11696-023-02932-y.
- Modolon H.B., Teixeira L.B., Mazur L.P., Santos P.H., Camani P.H., Mei L.H.I., Wermuth T.B., Klegues Montedo O.R., Zimmermann M.V.G., Arcaro S., dos Santos Rosa D., Electrospun adsorbent membrane of PLA containing chitosan for toxic metal ions removal from aqueous solution: Effect of chitosan incorporation, International Journal of Biological Macromolecules, 297: 139435, 2025, https://doi.org/10.1016/j.ijbiomac.2024.139435.
- Standau T., Zhao C., Castellón M.S., Bonten C., Altstädt V., Chemical modification and foam processing of polylactide (PLA), Polymers, 11(2): 306, 2019, https://doi.org/10.3390/polym11020306.
- Abdulkareem A., Kasak P., Nassr M.G., Mahmoud A.A., Al-Ruweidi M.K.A.A., Mohamoud K.J., Hussein M.K., Popelka A., Surface modification of poly(lactic acid) film via cold plasma assisted grafting of fumaric and ascorbic acid, Polymers, 13(21): 3717, 2021, https://doi.org/10.3390/polym13213717.
- Fijoł N., Abdelhamid H.N., Pillai B., Hall S.A., Thomas N., Mathew A.P., 3D-printed monolithic biofilters based on a polylactic acid (PLA)-hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium, RSC Advances, 11: 32408–32418, 2021, https://doi.org/10.1039/d1ra05202k.
- Wang Y., Wang Y., Qiu S., Wang C., Zhang H., Guo J., Wang S., Ma H., 3D-printed filters for efficient heavy metal removal from water using PLA@CS/HAP composites, Polymers, 15, 2023, https://doi.org/10.3390/polym15204144.
- Yu Y., Ding Y., Zhou C., Ge S., Aging of polylactic acid microplastics during hydrothermal treatment of sewage sludge and its effects on heavy metals adsorption, Environmental Research, 216: 114532, 2023, https://doi.org/https://doi.org/10.1016/j.envres.2022.114532.
- Duan S., Liu X., Wang Y., Meng Y., Alsaedi A., Hayat T., Li J., Plasma surface modification of materials and their entrapment of water contaminant: A review, Plasma Processes and Polymers, 14(9): 1600218, 2017, https://doi.org/10.1002/ppap.201600218.
- Zhianmanesh M., Gilmour A., Bilek M.M.M., Akhavan B., Plasma surface functionalization: a comprehensive review of advances in the quest for bioinstructive materials and interfaces, Applied Physics Reviews, 10(2): 021301, 2023, https://doi.org/10.1063/5.0130829.
- Bhatt P., Kumar V., Subramaniyan V., Nagarajan K., Sekar M., Chinni S.V., Ramachawolran G., Plasma modification techniques for natural polymer-based drug delivery systems, Pharmaceutics, 15(8): 2066, 2023, https://doi.org/10.3390/pharmaceutics15082066.
- Rezaei F., Nikiforov A., Morent R., De Geyter N., Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers, Scientific Reports, 8(1): 2241, 2018, https://doi.org/10.1038/s41598-018-20714-5.
- Ge X., Zhang L., Wei X., Long X., Han Y., Plasma surface treatment and application of polyvinyl alcohol/polylactic acid electrospun fibrous hemostatic membrane, Polymers, 16(12): 1635, 2024, https://doi.org/10.3390/polym16121635.
- Ma Z., Gao C., Ji J., Shen J., Protein immobilization on the surface of poly-L-lactic acid films for improvement of cellular interactions, European Polymer Journal, 38(11): 2279–2284, 2002, https://doi.org/10.1016/S0014-3057(02)00119-2.
- Gu J., Catchmark J.M., Polylactic acid composites incorporating casein functionalized cellulose nanowhiskers, Journal of Biological Engineering, 7(1): 31, 2013, https://doi.org/10.1186/1754-1611-7-31.
- Pellis A., Acero E.H., Weber H., Obersriebnig M., Breinbauer R., Srebotnik E., Guebitz G.M., Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes, Biotechnology Journal, 10(11): 1739–1749, 2015, https://doi.org/10.1002/biot.201500074.
- Lee S.H., Yeo S.Y., Improvement of hydrophilicity of polylactic acid (PLA) fabrics by means of a proteolytic enzyme from Bacillus licheniformis, Fibers and Polymers, 17(8): 1154–1161, 2016, https://doi.org/10.1007/s12221-016-5923-z.
- Huang Y., Wang Y., Li Y., Luo C., Yang C., Shi W., Li L., Covalent immobilization of polypeptides on polylactic acid films and their application to fresh beef preservation, Journal of Agricultural and Food Chemistry, 68(39): 10532–10541, 2020, https://doi.org/10.1021/acs.jafc.0c03922.
- Calzoni E., Cesaretti A., Tacchi S., Caponi S., Pellegrino R.M., Luzi F., Cottone F., Fioretto D., Emiliani C., Di Michele A., Covalent immobilization of proteases on polylactic acid for proteins hydrolysis and waste biomass protein content valorization, Catalysts, 11(2): 167, 2021, https://doi.org/10.3390/catal11020167.
- Ozaltin K., Di Martino A., Capakova Z., Lehocky M., Humpolicek P., Saha T., Vesela D., Mozetic M., Saha P., Plasma mediated chlorhexidine immobilization onto polylactic acid surface via carbodiimide chemistry: antibacterial and cytocompatibility assessment, Polymers, 13(8): 1201, 2021, https://doi.org/10.3390/polym13081201.
- Hu S., Deng Y., Li L., Zhang N., Huang T., Lei Y., Wang Y., Biomimetic polylactic acid electrospun fibers grafted with polyethyleneimine for highly efficient methyl orange and Cr(VI) removal, Langmuir, 39(10): 3770–3783, 2023, https://doi.org/10.1021/acs.langmuir.2c03508.
- Tubić A., Lončarski M., Maletić S., Molnar Jazić J., Watson M., Tričković J., Agbaba J., Significance of chlorinated phenols adsorption on plastics and bioplastics during water treatment, Water, 11(11): 2358, 2019, https://doi.org/10.3390/w11112358.
- Ghorbani M., Hassan Vakili M., Ameri E., Fabrication and evaluation of a biopolymer-based nanocomposite membrane for oily wastewater treatment, Materials Today Communications, 28: 102560, 2021, https://doi.org/10.1016/j.mtcomm.2021.102560.
- Lin W-H., Wang H-Y., Kuo J., Lo S-L., Adsorption and desorption characteristics of heavy metals onto conventional and biodegradable plastics, Chemosphere, 333: 138920, 2023, https://doi.org/10.1016/j.chemosphere.2023.138920.
- Makhetha T.A., Mpitso K., Luyt A.S., Preparation and characterization of eva/pla/sugarcane bagasse composites for water purification, Journal of Composite Materials, 51(9): 1169–1186, 2017, https://doi.org/10.1177/0021998316675399.
- Sattar M., Hayeeye F., Chinpa W., Sirichote O., Poly(lactic acid)/activated carbon composite beads by phase inversion method for kinetic and adsorption studies of Pb2+ ions in aqueous solution, Desalination and Water Treatment, 146: 227–235, 2019, https://doi.org/10.5004/dwt.2019.23590.
- Tian Y., Zeng Q-H., Shi L., Xian Z-F., Type I collagen adsorption behavior on the control and modified surface of polylactide coating, Science of Advanced Materials, 14(7): 1190–1195, 2022, https://doi.org/https://doi.org/10.3390/polym13081201.
- Wei L., Zhao L., Zhu X., He J., Yu D., Zhao Q., Zong K., Wang C., Ma C., Bu Q., Preparation and adsorption application of PLA/GO/PDA nanofiber membrane, Materials Research Express, 11(1): 115006, 2024, https://doi.org/10.1088/2053-1591/ad87b3.
- Fijoł N., Aguilar-Sánchez A., Ruiz-Caldas M-X., Redlinger-Pohn J., Mautner A., Mathew A.P., 3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water, Chemical Engineering Journal, 457: 141153, 2023, https://doi.org/10.1016/j.cej.2022.141153.
- Xiao X., Hodson M.E., Sallach J.B., Biodegradable microplastics adsorb more Cd than conventional microplastic and biofilms enhance their adsorption, Chemosphere, 371: 144062, 2025, https://doi.org/10.1016/j.chemosphere.2025.144062.
- Liu H., Jiao Q., Pan T., Liu W., Li S., Zhu X., Zhang T., Aging behavior of biodegradable polylactic acid microplastics accelerated by UV/H2O2 processes, Chemosphere, 337: 139360, 2023, https://doi.org/10.1016/j.chemosphere.2023.139360.
- Li B., Zhao G., Wang G., Zhang L., Gong J., Shi Z., Super high-expansion poly(lactic acid) foams with excellent oil-adsorption and thermal-insulation properties fabricated by supercritical CO2 foaming, Advanced Sustainable Systems, 5(5): 2000295, 2021, https://doi.org/10.1002/adsu.202000295.
- Sun Y., Wang X., Xia S., Zhao J., Cu(II) adsorption on poly(lactic acid) microplastics: Significance of microbial colonization and degradation, Chemical Engineering Journal, 429: 132306, 2022, https://doi.org/10.1016/j.cej.2021.132306.
- Zhang L., Narita C., Himeda Y., Honma H., Yamada K., Development of highly oil-absorbent polylactic-acid microfibers with a nanoporous structure via simple one-step centrifugal spinning, Separation and Purification Technology, 282: 120156, 2022, https://doi.org/10.1016/j.seppur.2021.120156.
- Chen P-W., Hsiao M-N., Xiao L-W., Liu Z-S., Adsorption behavior of heavy metals onto microplastics derived from conventional and biodegradable commercial plastic products, Science of the Total Environment, 951: 175537, 2024, https://doi.org/10.1016/j.scitotenv.2024.175537.
- Manjunatha C.R., Nagabhushana B.M., Naryana A., Usha P., Raghu M.S., Adrsha J.R., Adsorption of fluoride and DB-53 dye onto PLA/rGO nanoparticles: Mathematical modeling and statistical studies, Journal of Water Process Engineering, 44: 102447, 2021, https://doi.org/10.1016/j.jwpe.2021.102447.
- Subash A., Naebe M., Wang X., Sahoo S.K., Kandasubramanian B., Electrospinning of polylactic acid fibers reinforced with Ti3C2 for the removal of nickel ions from wastewater, Hybrid Advances, 4: 100109, 2023, https://doi.org/10.1016/j.hybadv.2023.100109.
- Sattar M., Hayeeye F., Chinpa W., Sirichote O., Preparation and characterization of poly(lactic acid)/activated carbon composite bead via phase inversion method and its use as adsorbent for Rhodamine B in aqueous solution, Journal of Environmental Chemical Engineering, 5: 3780–3791, 2017, https://doi.org/10.1016/j.jece.2017.07.007.
- Schneider R., Facure M.H.M., Alvarenga A.D., Chagas P.A.M., Dos Santos D.M., Correa D.S., Dye adsorption capacity of MoS2 nanoflakes immobilized on poly(lactic acid) fibrous membranes, ACS Applied Nano Materials, 4(5): 4881–4894, 2021, https://doi.org/10.1021/acsanm.1c00442.
- Xiao W., Niu B., Yu M., Sun C., Wang L., Zhou L., Zheng Y., Fabrication of foam-like oil sorbent from polylactic acid and Calotropis gigantea fiber for effective oil absorption, Journal of Cleaner Production, 278: 123507, 2021, https://doi.org/10.1016/j.jclepro.2020.123507.
- Li B., Zhao G., Wang G., Zhang L., Gong J., Shi Z., Biodegradable PLA/PBS open-cell foam fabricated by supercritical CO2 foaming for selective oil-adsorption, Separation and Purification Technology, 257: 117949, 2021, https://doi.org/10.1016/j.seppur.2020.117949.
- Davidson O., Pereware A., Ikenna Osu C., Environmental Friendly natural polymer and its polylactic acid modified composite synthesized from Thais coronata shell for urea uptake from waste water by equilibration, International Journal of Ecotoxicology and Ecobiology, 8(1): 1–8, 2023, https://doi.org/10.11648/j.ijee.20230801.11.
- Yadav A.L., Gurave P.M., Gadkari R.R., Ali W., Fabrication and characterization of polylactic acid-based green materials, [in:] Shakeel A. [Ed.], Advances in Green Materials, pp. 75–84, Woodhead Publishing, 2021, https://doi.org/10.1016/B978-0-12-819988-6.00006-9.
- Pesaranhajiabbas E., Misra M., Mohanty A.K., Recent progress on biodegradable polylactic acid based blends and their biocomposites: A comprehensive review, International Journal of Biological Macromolecules, 253: 126231, 2023, https://doi.org/10.1016/j.ijbiomac.2023.126231.
- Satyam S., Patra S., Innovations and challenges in adsorption-based wastewater remediation: A comprehensive review, Heliyon, 10(9): e29573, 2024, https://doi.org/10.1016/j.heliyon.2024.e29573.
- Karagöz İ., Production and characterization of sustainable biocompatible PLA/walnut shell composite materials, Polymer Bulletin, 81(13): 11517–11337, 2024, https://doi.org/10.1007/s00289-024-05247-4.
- Ozcan D.O., Hendekci̇ M.C., Ovez B., Enhancing the adsorption capacity of organic and inorganic pollutants onto impregnated olive stone derived activated carbon, Heliyon, 10(12): e32792, 2024, https://doi.org/10.1016/j.heliyon.2024.e32792.
- Nasir F.N., Titah H.S., The use of granular activated carbon and zeolite as an adsorbent to reduce the concentration of phosphate, chemical oxygen demand and total suspended solid in laundry wastewater, Journal of Ecological Engineering, 25: 170–183, 2024, https://doi.org/10.12911/22998993/184089.
- Pérez-Botella E., Valencia S., Rey F., Zeolites in adsorption processes: State of the art and future prospects, Chemical Reviews, 122: 17647–17695, 2022, https://doi.org/10.1021/acs.chemrev.2c00140.
- Boer D.G., Langerak J., Pescarmona P.P., Zeolites as selective adsorbents for CO2 separation, ACS Applied Energy Materials, 6: 2634–2656, 2023, https://doi.org/10.1021/acsaem.2c03605.
- Awasthi A., Jadhao P., Kumari K., Clay nano-adsorbent: Structures, applications and mechanism for water treatment, SN Applied Sciences, 1: 1076, 2019, https://doi.org/10.1007/s42452-019-0858-9.
- Suryani, Agusnar H., Wirjosentono B., Rihayat T., Nurhanifa, Improving the quality of biopolymer (poly lactic acid) with the addition of bentonite as filler, IOP Conference Series: Materials Science and Engineering, 222(1): 012008, 2017, https://doi.org/10.1088/1757-899X/222/1/012008.
- Ewis D., Ba-Abbad M.M., Benamor A., El-Naas M.H., Adsorption of organic water pollutants by clays and clay minerals composites: A comprehensive review, Applied Clay Science, 229: 106686, 2022, https://doi.org/10.1016/j.clay.2022.106686.
- Gopal G., Kvg R., M. S., J. L., Chandrasekaran N., Mukherjee A., Green synthesized Fe/Pd and in-situ bentonite-Fe/Pd composite for efficient tetracycline removal, Journal of Environmental Chemical Engineering, 8(5): 104126, 2020, https://doi.org/10.1016/j.jece.2020.104126.
- Mishra K., Siwal S.S., Sithole T., Singh N., Hart P., Thakur V.K., Biorenewable materials for water remediation: The central role of cellulose in achieving sustainability, Journal of Bioresources and Bioproducts, 9(3): 253–282, 2024, https://doi.org/10.1016/j.jobab.2023.12.002.
- Vithya B., Saravanakumar S.S., Senthamaraikannan P., Murugan R., Extraction and characterization of microcrystalline cellulose from Vachellia nilotica plant leaves: A biomass waste to wealth approach, Physiologia Plantarum, 176(3): e14368, 2024, https://doi.org/10.1111/ppl.14368.
- Ahmima S., Naar N., Jędrzejczak P., Klapiszewska I., Klapiszewski Ł., Jesionowski T., Isolation and characterization of novel cellulose micro/nanofibers from Lygeum spartum through a chemo-mechanical process, Polymers, 16(21): 3001, 2024, https://doi.org/10.3390/polym16213001.
- Rahmi, Patra A., Lelifajri, Fabrication of coconut dregs residue derived nano-cellulose film for food packaging, South African Journal of Chemical Engineering, 48: 71–79, 2024, https://doi.org/10.1016/j.sajce.2024.01.009.
- Kacaribu A.A., Rahmi R., Julinawati J., Fathana H., Reza M., Iqhramullah M., Preparation and characterization of cellulose film from velvet tamarind rind (Dialium indum L.) for food packaging, Applied Science and Engineering Progress, 18(3): 7724, 2025, https://doi.org/10.14416/j.asep.2025.03.006.
- Li Y., Liu Z., Wang S., Kong F., Cellulose composite aerogels with high adsorption capacity and recyclability for dye removal, ChemistrySelect, 9(43): e202402801, 2024, https://doi.org/10.1002/slct.202402801.
- Nagendran V., Goveas L.C., Vinayagam R., Varadavenkatesan T., Selvaraj R., Challenges and advances in nanocellulose-based adsorbents for dye removal: Mechanisms and future directions, Discover Applied Sciences, 7: 14, 2024, https://doi.org/10.1007/s42452-024-06413-z.
- Tomkowiak K., Mazela B., Szubert Z., Perdoch W., Hydrophobic cellulose-based sorbents for oil/water separation, Molecules, 29(19): 4661, 2024, https://doi.org/10.3390/molecules29194661.
- Kost B., Basko M., Bednarek M., Socka M., Kopka B., Łapienis G., Biela T., Kubisa P., Brzeziński M., The influence of the functional end groups on the properties of polylactide-based materials, Progress in Polymer Science, 130: 101556, 2022, https://doi.org/10.1016/j.progpolymsci.2022.101556.
- Kowalczyk M., Piorkowska E., Kulpinski P., Pracella M., Mechanical and thermal properties of PLA composites with cellulose nanofibers and standard size fibers, Composites Part A: Applied Science and Manufacturing, 42(10): 1509–1514, 2011, https://doi.org/10.1016/j.compositesa.2011.07.003.
- Benini Coelho de Carvalho K.C., Campos de Bomfim A.S., Voorwald H.J.C., Cellulose-reinforced polylactic acid composites for three-dimensional printing using polyethylene glycol as an additive: A comprehensive review, Polymers (Basel), 15(19): 3960, 2023, https://doi.org/10.3390/polym15193960.
- Ahmed M.A., Mohamed A.A., The use of chitosan-based composites for environmental remediation: A review, International Journal of Biological Macromolecules, 242(Part 2): 124787, 2023, https://doi.org/10.1016/j.ijbiomac.2023.124787.
- Bhatt P., Joshi S., Urper Bayram G.M., Khati P., Simsek H., Developments and application of chitosan-based adsorbents for wastewater treatments, Environmental Research, 226: 115530, 2023, https://doi.org/10.1016/j.envres.2023.115530.
- Mohd Asharuddin S., Othman N., Altowayti W.A.H., Abu Bakar N., Hassan A., Recent advancement in starch modification and its application as water treatment agent, Environmental Technology & Innovation, 23: 101637, 2021, https://doi.org/https://doi.org/10.1016/j.eti.2021.101637.
- Ren Z., Liu C., Zhang B., Wu M., Tan Y., Fang X., Yang P., Liu L., Preparation of amino-functionalized starch-based adsorbent and its adsorption behavior for uranyl ions, Journal of Radioanalytical and Nuclear Chemistry, 328(3): 1253–1263, 2021, https://doi.org/10.1007/s10967-021-07733-9.
- Khoo P.S., Ilyas R.A., Uda M.N.A., Hassan S.A., Nordin A.H., Norfarhana A.S., Ab Hamid N.H., Rani M.S.A., Abral H., Norrrahim M.N.F., Knight V.F., Lee C.L., Rafiqah S.A., Starch-based polymer materials as advanced adsorbents for sustainable water treatment: current status, challenges, and future perspectives, Polymers (Basel), 15(14): 3114, 2023, https://doi.org/10.3390/polym15143114.
- Rashwan A.K., Younis H.A., Abdelshafy A.M., Osman A.I., Eletmany M.R., Hafouda M.A., Chen W., Plant starch extraction, modification, and green applications: A review, Environmental Chemistry Letters, 22: 2483–2530, 2024, https://doi.org/10.1007/s10311-024-01753-z.
- Jiang C., Cui S., Han Q., Li P., Zhang Q., Song J., Li M., Study on application of activated carbon in water treatment, IOP Conference Series: Earth and Environmental Science, 237(2): 022049, 2019, https://doi.org/10.1088/1755-1315/237/2/022049.
- Hamdan M., Sublaban E., Al-Asfar J., Banisaid M., Wastewater treatment using activated carbon produced from oil shale, Journal of Ecological Engineering, 24(2): 131–139, 2023, https://doi.org/10.12911/22998993/156664.
- de Magalhães L.F., da Silva G.R., Peres A.E.C., Zeolite application in wastewater treatment, Adsorption Science & Technology, 2022: 4544104, 2022, https://doi.org/10.1155/2022/4544104.
- Shi J., Yang Z., Dai H., Lu X., Peng L., Tan X., Shi L., Fahim R., Preparation and application of modified zeolites as adsorbents in wastewater treatment, Water Science and Technology, 2017(3): 621–635, 2018, https://doi.org/10.2166/wst.2018.249.
- Julinawati J., Febriani F., Mustafa I., Fathurrahmi F., Rahmi R., Sheilatina S., Ahmad K., Puspita K., Iqhrammullah M., Tryptophan-based organoclay for aqueous naphthol blue black removal – preparation, characterization, and batch adsorption studies, Journal of Ecological Engineering, 24(7): 274–284, 2023, https://doi.org/10.12911/22998993/165781.
- Abdel Salam M., Abukhadra M.R., Adlii A., Insight into the adsorption and photocatalytic behaviors of an organo-bentonite/Co3O4 green nanocomposite for malachite green synthetic dye and Cr(VI) metal ions: Application and mechanisms, ACS Omega, 5(6): 2766–2778, 2020, https://doi.org/10.1021/acsomega.9b03411.
- Iravani R., An C., Adamian Y., Mohammadi M., A review on the use of nanoclay adsorbents in environmental pollution control, Water, Air, and Soil Pollution, 233: 109, 2022, https://doi.org/10.1007/s11270-022-05580-2.
- Naser H., Czinkota I., Dorkota A., Horváth M., A review of the advancements of potentially toxic element adsorption by various cellulose-based materials and the used adsorbents’ fate, Progress in Agricultural Engineering Sciences, 19(1): 1–13, 2023, https://doi.org/10.1556/446.2023.00068.
- Elzahar M.M.H., Bassyouni M., Removal of direct dyes from wastewater using chitosan and polyacrylamide blends, Scientific Reports, 13(1): 15750, 2023, https://doi.org/10.1038/s41598-023-42960-y.
- García-Padilla Á., Moreno-Sader K.A., Realpe Á., Acevedo-Morantes M., Soares J.B.P., Evaluation of adsorption capacities of nanocomposites prepared from bean starch and montmorillonite, Sustainable Chemistry and Pharmacy, 17: 100292, 2020, https://doi.org/10.1016/j.scp.2020.100292.
- Abd El-Ghany N.A., Elella M.H.A., Abdallah H.M., Mostafa M.S., Samy M., Recent advances in various starch formulation for wastewater purification via adsorption technique: A review, Journal of Polymers and the Environment, 31(7): 2792–2825, 2023, https://doi.org/10.1007/s10924-023-02798-x.
- Oladoye P.O., Kadhom M., Khan I., Hama Aziz K.H., Alli Y.A., Advancements in adsorption and photodegradation technologies for Rhodamine B dye wastewater treatment: Fundamentals, applications, and future directions, Green Chemicals Engineering, 5(4): 440–460, 2024, https://doi.org/10.1016/j.gce.2023.12.004.