Dynamic Eccentricity Modeling of a Switched Reluctance Motor

Downloads

Authors

Abstract

The switched reluctance motor (SRM), known for its robust and simple construction, is widely utilized in critical applications. This study investigates the impact of rotor dynamic eccentricity on the motor's current signal. Our research introduces a straightforward diagnostic method to detect and quantify dynamic eccentricity by analyzing the current signal spectrum. This approach specifically focuses on identifying amplitude increases in characteristic additional harmonics, leveraging fundamental electromagnetic transformations to eliminate the need for complex algorithms. Through coupled computer simulations, combining a finite element analysis model (FEMM) with dynamic equation solutions in Simulink, this study identifies specific eccentricity ranges and their corresponding characteristic current values, offering a reliable tool for SRM condition monitoring.

Keywords:

switched reluctance motor, SRM, motor diagnostics, eccentricity

References

1.    Bilgin B., Jiang J.W., Emadi A., Switched Reluctance Motor Drives: Fundamentals to Applications, CRC Press, Boca Raton, FL, 2018.
2.    Husain I., Switched reluctance machines, [in:] The Power Electronics Handbook, Rashid M.H. [Ed.], pp. 879–933, CRC Press, Boca Raton, FL, 2018.
3.    Biernat, A., Analysis of diagnostic signals of electrical machines [in Polish: Analiza sygnałów diagnostycznych maszyn elektrycznych], Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2015.
4.    Toliyat H. A., Ghahramani M., Karami N., Electric machines: modeling, condition monitoring, and fault diagnosis, CRC Press, Boca Raton, FL, 2017.
5.    Hu Y., Zhang Z., Sun D., Gu C., Li Y., Fault diagnosis of full-bridge power converter for SRMs based on modified current detection, IEEE Journal of Emerging and Selected Topics in Power Electronics, 12(3): 1042–1053, 2024, https://doi.org/10.1109/JESTPE.2023.3345410.
6.    Ali N., Wang Q., Gao Q., Ma K., Diagnosis of multicomponent faults in SRM drives based on auxiliary current reconstruction under soft-switching operation, IEEE Transactions on Industrial Electronics, 71(3): 2265–2276, 2024, https://doi.org/10.1109/TIE.2023.3266596.
7.    Zhang L., Song J., Wang X., Lu J., Lu S., High-resistance connection fault diagnosis of SRM based on multisensor calibrated transformer with shifted windows, IEEE Sensors Journal, 23(24): 30971–30983, 2023, https://doi.org/10.1109/jsen.2023.3331695.
8.    Xing C., Zhu Y., Wang J., Wu H., Huang Y., Coordination control between vibration suppression and energy regeneration for vehicles driven by in-wheel motors under regenerative braking condition, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 239(2–3): 847–865, 2023, https://doi.org/10.1177/09544070231208161.
9.    Rani S., Jayapragash R., FEA-based pole arc optimization and sensitivity analysis of 8/6 SRM for EV application, Results in Engineering, 23: 102683, 2024, https://doi.org/10.1016/j.rineng.2024.102683.
10.    Lorencki J., Radkowski S., Gontarz S., Diagnostically oriented experiments and modelling of switched reluctance motor dynamic eccentricity, Sensors, 21(11): 1–13, 2021, https://doi.org/10.3390/s21113857.
11.    Lorencki J., Radkowski S., Mechanical faults analysis in switched reluctance motor, Applied Sciences-Basel, 14(8): 1–16, 2024, https://doi.org/10.3390/app14083452.
12.    Torkaman H., Afjei E., Magnetostatic field analysis and diagnosis of mixed eccentricity fault in switched reluctance motor, Electromagnetics, 31(5): 368–383, 2011, https://doi.org/10.1080/02726340902953354.
13.    Faiz J., Pakdelian S., Diagnosis of static eccentricity in switched reluctance motors based on mutually induced voltages, IEEE Transactions on Magnetics, 44(8): 2029–2032, 2008, https://doi.org/10.1109/TMAG.2008.2001648.
14.    Dorrell D.G., Cossar C., A Vibration-based condition monitoring system for switched reluctance machine rotor eccentricity detection, IEEE Transactions on Magnetics, 44(9): 2204–2207, 2008, https://doi.org/10.1109/TMAG.2008.2001389.
15.    Torkaman H., Afjei E., Yadegari P., Static, dynamic, and mixed eccentricity faults diagnosis in switched reluctance motors using transient finite element method and experiments, IEEE Transactions on Magnetics, 48(8): 2254–2260, 2012, https://doi.org/10.1109/TMAG.2012.2195977.
16.    Szczypior J., Bieńkowski K. Mathematical model of a switched reluctance motor [in Polish: Model matematyczny silnika reluktancyjnego przełączalnego], [in:] Prace IX Sympozjum Symulacja Procesów Dynamicznych SPD-9, pp. 257–263, Polana Chochołowska, 1996.