Comparison of Gantry Drive and Crankset: A Pilot Study Across a Broad Power Spectrum

Downloads

Authors

  • Łukasz BEREŚ Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland ORCID ID 0000-0002-9030-1784
  • Marcin OBSZAŃSKI Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland
  • Paweł PYRZANOWSKI Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Poland ORCID ID 0000-0003-1015-7645

Abstract

The gantry drive was originally invented in 1948 in England and was “rediscovered” in Poland in 2019 while working on lightweight, personal, compact vehicles. In this study, the gantry drive is subjected to dynamic tests against the background of the commonly known crankset. The aim of the dynamic tests is to develop power curves and measure efficiency for various human-mechanism systems, i.e., the hand-driven crankset, the leg-driven crankset, and the gantry drive. Pilot dynamic tests have shown many advantages of the gantry over the crankset; in general, test participants were much less tired when using the gantry drive.

Keywords:

gantry, crankset, drive, power, vehicle

References


  1. Rundle L.A., Crankless bicycle, Patent GB654743A, 1951, https://worldwide.espacenet.com/patent/search/family/010234864/publication/GB654743A?q=gb654743.

  2. Bereś Ł., Drive system, in particular for 3 and 4 wheel bicycles [in Polish: Układ napędowy zwłaszcza do rowerow 3 i 4 kołowych], Patent application P.429502, 2019, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.429502?lng=pl.

  3. White L., Medieval technology and social change, Oxford University Press, 1962, https://maelstromlife.wordpress.com/wp-content/uploads/2015/12/lynn-white_medievaltechnology-and-social-change-1962.pdf. (access: 2025.01.14).

  4. Lallement P., Improvement in velocipedes, Patent US59915A, 1866, https://worldwide.espacenet.com/patent/search/family/002129454/publication/US59915A?q=US59915A.

  5. Wikipedia, Pierre Lallement, 2024, https://en.wikipedia.org/wiki/Pierre_Lallement. (access: 2025.01.14).

  6. Wikipedia, James Starley, 2024, https://en.wikipedia.org/wiki/James_Starley. (access: 2025.01.14).

  7. Wikipedia, John Kemp Starley, 2024, https://en.wikipedia.org/wiki/John. Kemp Starley (access: 2025.01.14).

  8. Wikipedia, Safety bicycle, 2024, https://en.wikipedia.org/wiki/Safety_bicycle. (access: 2025.01.14).

  9. Bereś Ł., Pyrzanowski P., The gantry as a drive for a horizontal bike: Initial investigation of rotary work, Applied Bionics and Biomechanics, 2021: 6654377, 2021, https://doi.org/10.1155/2021/6654377.

  10. Bereś Ł., Pyrzanowski P., Surface of maximum forces generated by human legs for two type of seat – Experimental investigation, [in:] Book of Abstracts of 39th Danubia-Adria Symposium on Advances in Experimental Mechanics, Hungarian Scientific Society of Mechanical Engineering, pp. 18–19, Siofok, 2023, https://das2023.hu/assets/images/BOA. 39th DAS.pdf (access: 2025.01.14).

  11. Bereś Ł., Drivetrain system designed for a 3 wheel bike [in Polish: Układ przeniesienia napędu], Patent Pat.245976, 2020, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwpdetails/P.433694?lng=pl.

  12. Bereś Ł., Bereś B., Retracting system of the gantry used as a drive, in particular in 3- and 4-wheel bicycles [in Polish: Układ wycofywania suwnicy stosowanej jako napęd w rowerach trzy i czterokołowych], Patent Pat.245977, 2020, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.433695?lng=pl.

  13. Bereś Ł., Pyrzanowski P., Power transmission system for a human-powered vehicle [in Polish: Układ napędowy do pojazdu zasilanego siłą ludzkich mięśni], Patent Pat.244586, 2020, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.438930?lng=pl.

  14. Bereś Ł., Pyrzanowski. P., Power transmission system for a human-powered vehicle [in Polish: Układ napędowy do pojazdu zasilanego siłą ludzkich mięśni], Patent Pat.244587, 2023, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.438931?lng=pl.

  15. Bereś Ł., Pyrzanowski. P., Power transmission system for a human-powered vehicle [in Polish: Układ napędowy do pojazdu zasilanego siłą ludzkich mięśni], Patent Pat.244588, 2023, https://ewyszukiwarka.pue.uprp.gov.pl/search/pwp-details/P.438932?lng=pl.

  16. Tian H., Zhang H., Yin Z., Liu Y., Zhang X., Xu Y., Chen H., Advancements in compressed air engine technology and power system integration: A comprehensive review, Energy Reviews 2(4): 100050, 2023, https://doi.org/10.1016/j.enrev.2023.100050.

  17. BereSolutions 2023, BereSolutions Products, 2023, https://www.beresolutions.com/. (access: 2025.01.14).

  18. Bereś Ł., Pyrzanowska J., Mirowska-Guzel D., Obszański M., Pyrzanowski P., Optimization of the seat position for a personal vehicle equipped with a crankset – pilot study, Scientific Reports, 14: 5822, 2024, https://doi.org/10.1038/s41598-024-56446-y.

  19. World Human Powered Vehicle Association, Competition, Records and Achievements, n.d., http://www.whpva.org/competition.html. (access: 2025.01.14).

  20. Datta S.R., Ramanathan N.L., Energy expenditure in work predicted from heart rate and pulmonary ventilation, Journal of Applied Physiology, 26(3): 297–302, 1969, https://doi.org/10.1152/jappl.1969.26.3.297.

  21. Javorka M., Zila I., Balhárek T., Javorka K., Heart rate recovery after exercise: Relations to heart rate variability and complexity, Brazilian Journal of Medical and Biological Research, 35(8): 991–1000, 2002, https://doi.org/10.1590/S0100-879X2002000800018.

  22. Behrens M., Gube M., Chaabene H., Pierske O., Zenon A., Broscheid K.-C., Schega L., Husmann F., Weippert M., Fatigue and human performance: An updated framework, Sports Medicine 53(1): 7–31, 2023, https://doi.org/10.1007/s40279-022-01748-2.

  23. Alcazar J., Csapo R., Ara I., Alegre L.M., On the shape of the force-velocity relationship in skeletal muscles: The linear, the hyperbolic, and the double-hyperbolic, Frontiers in Physiology, 10: 769, 2019, https://doi.org/10.3389/fphys.2019.00769.

  24. Jaskolska A., Jaskolski A., Physiological and mechanical properties of skeletal muscles – Are they the same in different muscles and in all individuals? [in Polish: Właściwości fizjologiczne i mechaniczne mięśni szkieletowych – Czy są takie same w rożnych mięśniach i u wszystkich osob?], Kosmos. Problemy Nauk Biologicznych, 69(4): 739–756, 2020, https://doi.org/10.36921/kos.2020_2734.

  25. Gao Y-R., Drew P.J., Determination of vessel cross-sectional area by thresholding in Radon space, Journal of Cerebral Blood Flow & Metabolism, 34(7): 1180–1187, 2014, https://doi.org/10.1038/jcbfm.2014.67.

  26. Mortensen J.D., Talbot S., Burkart J.A., Cross-sectional internal diameters of human cervical and femoral blood vessels: Relationship to subject’s sex, age, body size, The Anatomical Records, 226(1): 115–124, 1990, https://doi.org/10.1002/ar.1092260114.

  27. Hof A.L., Van den Berg Jw., How much energy can be stored in human muscle elasticity?: Comment on: ‘An alternative view of the concept of utilisation of elastic energy in human movements’, Human Movement Science 5(2): 107–114, 1986, https://doi.org/10.1016/0167-9457(86)90018-7.

  28. Roberts T.J., Contribution of elastic tissues to the mechanics and energetics of muscle function during movement, Journal of Experimental Biology 219(2): 266–275, 2016, https://doi.org/10.1242/jeb.124446.

  29. Böning D., Maassen N., Steinach M., The efficiency of muscular exercise, German Journal of Sports Medicine, 68: 203–214, 2017, https://doi.org/10.5960/dzsm.2017.295.

  30. Coyle E.F., Understanding efficiency of human muscular movement exemplifies integrative and translational physiology, The Journal of Physiology, 571(3): 501, 2006, https://doi.org/10.1113/jphysiol.2006.106591.

  31. Ogilvie F., Ogilvie J., Human powered machine and conveyance with reciprocating pedals, Patent WO9212882A1, 1992, https://worldwide.espacenet.com/patent/search/family/024594722/publication/WO9212882A1?q=wo92%2F12882.