Abstract
This paper presents research that formed the basis for the development of a low-temperature centrifugal extraction reactor. This reactor is used to obtain medicinal substances from herbs, where key parameters include extraction time, temperature, and the velocity of the solvent that flows through the dried herbs. An important parameter for performing simulation studies was the assessment of the medium flow characteristics through the dried medicinal herb material. For this purpose, a flow reactor was developed and tested.
The first part of the paper discusses the results of numerical and experimental studies on liquid flow through the extraction reactor. This part of the work was carried out in order to determine the parameters related to the resistance of liquid flow through dried medicinal herbs. This resistance of the liquid flow through the herbs affects the limitation of its velocity and has a direct impact on the efficiency of the process. In the second part of the paper, the results obtained from the flow reactor experiments were used for numerical investigations of the centrifugal extractor drum.
Keywords:
extraction reactor, numerical investigations, flow resistance, medicinal herbsReferences
1. Stepnowski P., Synak E., Szafranek B., Kaczyński Z., Separation techniques [in Polish: Techniki separacyjne], Wydawnictwo Uniwersytetu Gdańskiego, Gdańsk 2010.
2. Abubakar A.R., Haque M., Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes, Journal of Pharmacy and Bioallied Sciences, 12: 1–10, 2020, https://doi.org/10.4103/jpbs.JPBS_175_19.
3. Borges A., José H., Homem V., Simões M., Comparison of techniques and solvents on the antimicrobial and antioxidant potential of extracts from Acacia dealbata and Olea europaea, Antibiotics, 9(2): 48, 2020, https://doi.org/10.3390/antibiotics9020048.
4. Rasul M.G., Conventional extraction methods use in medicinal plants, their advantages and disadvantages, International Journal of Basic Sciences and Applied Computing, 2(6): 10–14, 2018.
5. Thangjam N.M., Taijong J., Kumar A., Phytochemical and pharmacological activities of methanol extract of Artemisia vulgaris L. leaves, Clinical Phytoscience, 6(1): 72, 2020, https://doi.org/10.1186/s40816-020-00214-8.
6. Zhu Z., Jiang T., He J., Barba F.J., Cravotto G., Koubaa M., Ultrasound-assisted extraction, centrifugation and ultrafiltration: multistage process for polyphenol recovery from purple sweet potatoes, Molecules, 21(11): 1584, 2016, https://doi.org/10.3390/molecules21111584.
7. Meyer F., Gasimov N., Bubenheim, P., Waluga, T., Concept of an enzymatic reactive extraction centrifuge, Processes, 10(10): 2137, 2022, https://doi.org/10.3390/pr10102137.
8. Hamamah Z.A., Grützner T., Liquid-liquid centrifugal extractors: types and recent applications – A review, ChemBioEng Reviews, 9(3): 286–318, 2022, https://doi.org/10.1002/cben.202100035.
9. Zhang Q-W., Lin L-G., Ye W-C., Techniques for extraction and isolation of natural products: a comprehensive review, Chinese Medicine, 13: 20, 2018, https://doi.org/10.1186/s13020-018-0177-x.
10. Bojarska E., Cold ethanol Cannabis extraction, [in:] 19th International Technical Systems Degradation Conference, December 14–16, 2022, Liptovsky Mikulas, pp. 120–123, 2022.
11. Mączak J., Makowski M., Samoilenko D., Rutczyńska-Wdowiak K., Initial experimental and numerical research on medical substances extractor [in Polish: Wstępne badania eksperymentalne i numeryczne ekstraktora, [in:] Monografia: Współczesne wyzwania transportu i elektrotechniki, No 275 Vol 2, J. Wojciechowski, T. Ciszewski (Eds.), Uniwersytet Technologiczno-Humanistyczny im. Kazimierza Pułaskiego w Radomiu, pp. 95–110, 2021.
12. Mączak J., Makowski M., Bojarska E., Połaniecki A., Design and experimental study of a low-temperature flow extractor [in Polish: Budowa i badania eksperymentalne niskotemperaturowego ekstraktora przepływowego], Przemysł chemiczny, 103(12): 1461–1464, 2024, https://doi.org/10.15199/62.2024.12.12.
13. Nowak A., Stachurski A., Nonlinear regression problem of material functions identification for porous media plastic flow, Engineering Transactions, 49(4): 637–661, 2001, https://doi.org/10.24423/engtrans.546.2001.
14. Hassanabadi M., Akhtar S., Aune R. E., Study and modelling of fluid flow in ceramic foam filters, Materials, 16(17): 5954, 2023, https://doi.org/10.3390/ma16175954.
15. Stanik M., Caban S., Klonecka M., Buczak M., Wiśniewski P., Numerical studies of internal flow in different types of filters, Task Quarterly, 24(4): 335–344, 2020, https://doi.org/10.34808/tq2020/24.4/b.
16. Bae B., Jung J., Yu J.Y., Hydraulic performance and flow resistance tests of various hydraulic parts for optimal design of a reactor coolant pump for a small modular reactor, Nuclear Engineering and Technology, 55(3): 1181–1190, 2023, https://doi.org/10.1016/j.net.2022.10.042.
17. Kaood A., Aboulmagd A., Othman H., El-Degwy A., Numerical investigation of the thermal-hydraulic characteristics of turbulent flow in conical tubes with dimples, Case Studies in Thermal Engineering, 36: 102166, 2022, https://doi.org/10.1016/j.csite.2022.102166.
18. Tiezhu Sun T., Tang T., Ma J., Yan Y., Fu T., Zhang H., Li J., Li W., Shen H., Huan Ch., Experimental study on the flow resistance of inner tube and characteristics of drifting water in a tubular indirect evaporative cooler, International Journal of Refrigeration, 160: 275–297, 2024, https://doi.org/10.1016/j.ijrefrig.2024.02.005.
19. Nowak R., Estimation of viscous and inertial resistance coefficients for various heat sink configurations, Procedia Engineering, 157: 122–130, 2016, https://doi.org/10.1016/j.proeng.2016.08.347.

