10.24423/EngTrans.3387.2024
The Effect of Rotational Speeds on the Microstructural and Mechanical Properties of Friction Stir Welded Dissimilar Aluminum Alloy Plates
The aim of this study is to investigate the effects of rotational speed on the quality of welds, microstructure, and mechanical properties in friction stir welding of dissimilar aluminum alloys (AA5083 and AA6082). Different samples were produced by varying the rotational speeds to 900, 1000, 1130, and 1260 rpm. The microstructure of the weld joints was evaluated by optical microscopy, while microhardness and tensile stress were examined using a microhardness tester and tensile tester. The microstructural analysis indicates fine equiaxed recrystallized grains in the stir zone for all the samples, regardless of rotational speeds. However, the macrographs indicated the development of voids with increasing rotational speeds. The lowest microhardness was observed in the stir zone for all the samples. The ultimate tensile stress decreased as rotational speed increased. Overall, the lowest rotational speed of 900 rpm yielded optimal results, with minimal defects and higher tensile strength.
References
Santhoshkumar S., Senthil Kumar K.L., Kalil Rahiman M., Mathankumar P., A review on friction stir welding of aluminium alloys and the effects on tool geometry, IOP Conference Series: Materials Science and Engineering, 764(1): 012009, 2020, doi: 10.1088/1757-899X/764/1/012009.
Murr L.E., Li Y., Trillo E., McClure J.C., Fundamental issues and industrial applications of Friction-Stir Welding, Materials Technology, 15(1): 37–48, 2000, doi: 10.1080/10667857.2000.11752854.
Paik J.K., Mechanical properties of friction stir welded aluminium alloys 5083 and 5383, International Journal of Naval Architecture and Ocean Engineering, 1(1): 39–49, 2009, doi: 10.2478/IJNAOE-2013-0005.
Hirata T., Oguri T., Hagino H., Tanaka T., Chung S. W., Takigawa Y., Higashi K., Influence of friction stir welding parameters on grain size and formability in 5083 aluminum alloy, Materials Science and Engineering: A, 456(1–2): 344–349, 2007, doi: 10.1016/j.msea.2006.12.079.
Wan L., Huang Y., Guo W., Lv S., Feng J., Mechanical properties and microstructure of 6082-T6 aluminum alloy joints by self-support friction stir welding, Journal of Materials Science & Technology, 30(12): 1243-1250, 2014, doi: 10.1016/j.jmst.2014.04.009.
Cavaliere P., Campanile G., Panella F., Squillace A., Effect of welding parameters on mechanical and microstructural properties of AA6056 joints produced by friction stir welding, Journal of Materials Processing Technology, 180(1–3): 263–270, 2006, doi: 10.1016/j.jmatprotec.2006.06.015.
Mohammadzadeh Jamalian H., Farahani M., Besharati Givi M.K., Aghaei Vafaei M., Study on the effects of friction stir welding process parameters on the microstructure and mechanical properties of 5086-H34 aluminum welded joints, The International Journal of Advanced Manufacturing Technology, 83(1): 611–621, 2016, doi: 10.1007/s00170-015-7581-5.
Cavaliere P., De Santis A., Panella F., Squillace A., Effect of welding parameters on mechanical and microstructural properties of dissimilar AA6082–AA2024 joints produced by friction stir welding. Materials & Design, 30(3): 609–616, 2009, doi: 10.1016/j.matdes.2008.05.044.
Mishra R.S., Ma Z.Y., Friction stir welding and processing, Materials Science and Engineering: R: Reports, 50(1–2): 1–78, 2005, doi: 10.1016/j.mser.2005.07.001.
Leitão C., Louro R., Rodrigues D.M., Using torque sensitivity analysis in accessing friction stir welding/processing conditions, Journal of Materials Processing Technology, 212(10): 2051–2057, 2012, doi: 10.1016/j.jmatprotec.2012.05.009.
Bernard D., Hattingh D. G., Development of high welding speed in friction stir welded 5182-H111, and the resulting influence on down force, Materials Science Forum, 828–829: 366–373, doi: 10.4028/www.scientific.net/MSF.828-829.366.
Hamilton C., Kopyściański M., Węglowska A., Pietras A., Dymek S., Modeling, microstructure, and mechanical properties of dissimilar 2017A and 5083 aluminum alloys friction stir welds, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 233(2): 553–564, 2019, doi: 10.1177/0954405417740923.
Shah P.H., Badheka V.J., Friction stir welding of aluminium alloys: An overview of experimental findings – Process, variables, development and applications, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 233(6): 1191–1226, 2019, doi: 10.1177/1464420716689588.
Svensson L.-E., Karlsson L., Larsson H., Karlsson B., Fazzini M., Karlsson J., Microstructure and mechanical properties of friction stir welded aluminium alloys with special reference to AA 5083 and AA 6082, Science and Technology of Welding and Joining, 5(5): 285–296, 2000, doi: 10.1179/136217100101538335.
Palani K., Elanchezhian C., Saiprakash K.H.V., Sreekanth K., Dayanand D., Kumar K., Kumar D., Effect of welding parameters on mechanical properties of dissimilar friction stir processed AA 8011 and AA 5083-H321 aluminium alloys, IOP Conference Series: Materials Science and Engineering, 390(1): 012072, 2018, doi: 10.1088/1757-899X/390/1/012072.
Moni V., Mechanical properties of friction stir welded 5083-H321 and 6082-T651 dissimilar aluminium alloys, Master Thesis, Cape Peninsula University of Technology, 2020, https://etd.cput.ac.za/bitstream/20.500.11838/3158/1/Moni_Vuyani_209205520.pdf.
Dong P., Li H.M., Sun D.Q., Gong W.B., Liu J., Effects of welding speed on the microstructure and hardness in friction stir welding joints of 6005A-T6 aluminum alloy, Materials & Design, 45: 524–531, 2013, doi: 10.1016/j.matdes.2012.09.040.
Threadgill P.L., Leonard A.J., Shercliff H.R., Withers P. J., Friction stir welding of aluminium alloys, International Materials Reviews, 54(2): 49–93, 2009, doi: 10.1179/174328009X411136.
DOI: 10.24423/EngTrans.3387.2024