The Effect of Vocal Effort on Voice Quality in Occupations with High Vocal Load

Downloads

Authors

  • Mateusz STERCZEWSKI Polish-Japanese Academy of Information Technology, Poland
  • Daniel TRZASKOMA Polish-Japanese Academy of Information Technology, Poland
  • Krzysztof SZKLANNY Polish-Japanese Academy of Information Technology, Poland

Abstract

Phonation type identification and voice quality analysis are often performed using invasive methods such as laryngoscopy or fiberoscopy. This work aims to determine whether comparable results can be reproduced using acoustic analysis, a noninvasive method. The research consists of two series of experiments conducted on two separate groups of professional voice users to calculate the values of voice quality parameters (i.e., peak slope, normalized amplitude quotient, cepstral peak prominence, harmonics-to-noise ratio). The first experiment focused on recording voice in the sound studio (22 participants), while the second focused on collecting data using a dedicated mobile app outside the sound studio (20 participants). The collected samples were then analyzed to examine the effects of vocal load on voice quality and to determine variations between different groups of test participants. According to the results of the experiments, vocal load and working professionally with voice change the value of normalized amplitude quotient (NAQ). Furthermore, it has been shown that harmonics-to-noise ratio (HNR) and cepstral peak performance (CPP) vary with regular hydration status. 

Keywords:

voice quality, acoustic analysis, vocal load, vocal exhaustion, phonation type, hydration

References

[1]    Cantor-Cutiva L.C., Dalmasso M.d.C., Malebrán Bezerra de Mello M.C., Association between voice symptoms and college professors’ home working conditions during online classes in times of covid-19 pandemic, Revista de Investigación e Innovación en Ciencias de la Salud, 4(1): 62–72, 2022, https://doi.org/10.46634/riics.124.
[2]    Nemr K., Simões-Zenari M., Almeida Cologis V.C. de, Martins G.A., Saito I.T., Silva Gonçalves R. da, Covid-19 and remote learning: predictive factors of perceived improvement or worsening of the voice in Brazilian teachers, Journal of Voice, 38(1): 246.e27–246.e38, 2024, https://doi.org/10.1016/j.jvoice.2021.08.010.
[3]    Mohammed K.S., Rashid C.A., Salih H.A., Budur T., The role of online teaching tools on the perception of the students during the lockdown of Covid-19, International Journal of Social Sciences & Educational Studies, 7(3): 178–190, 2020, https://doi.org/10.23918/ijsses.v7i3p178.
[4]    Ruotsalainen J., Sellman J., Lehto L., Verbeek J., Systematic review of the treatment of functional dysphonia and prevention of voice disorders, Otolaryngology – Head and Neck Surgery, 138(5): 557–565, 2008, https://doi.org/10.1016/j.otohns.2008.01.014.
[5]    Bovo R., Galceran M., Petruccelli J., Hatzopoulos S., Vocal problems among teachers: evaluation of a preventive voice program, Journal of Voice, 21(6): 705–722, 2007, https://doi.org/10.1016/j.jvoice.2006.07.002.
[6]    Hazlett D., Duffy O., Moorhead S., Review of the impact of voice training on the vocal quality of professional voice users: implications for vocal health and recommendations for further research, Journal of Voice, 25(2): 181–191, 2011, https://doi.org/10.1016/j.jvoice.2009.08.005.
[7]    Cutiva L.C.C., Burdorf A., Effects of noise and acoustics in schools on vocal health in teachers, Noise & Health, 17(74): 17–22, 2015, https://doi.org/10.4103/1463-1741.149569.
[8]    Moczałdowski T., Grzanka A., Pawłowski Z., The review of methods for visualization of vocal folds vibration[in Polish: Przegląd metod wizualizacji drgań fałdów głosowych], Audiofonologia, XIII: 305–319, 1998.
[9]    Świdziński P., The objective method of voice disorders acoustic differentiation[in Polish: Obiektywna metoda akustycznego różnicowania zaburzeń głosu], Nowa Medycyna, 3, 2000.
[10]    Szklanny K., Acoustic parameters in the evaluation of voice quality of choral singers. prototype of mobile application for voice quality evaluation, Archives of Acoustics, 44(3): 439–446, 2019, https://doi.org/10.24425/aoa.2019.129257.
[11]    Alku P., Bäckström T., Vilkman E., Normalized amplitude quotient for parametrization of the glottal flow, The Journal of the Acoustical Society of America, 112(2): 701–710, 2002, https://doi.org/10.1121/1.1490365.
[12]    Hajja A., Wieczorkowska A.A., Raś Z.W., Gubrynowicz R., Objectdriven action rules and their application to hypernasality treatment, [in:] Proceedings of ECML-PKDD Workshop on New Frontier in Mining Complex Patterns, University of Bristol, 2012.
[13]    Gubrynowicz R., Chojnacka-Wądołowska D., Konopka C., Assessment of velum malfunction in children through simultaneous nasal and oral acoustic signals measurements, Archives of Acoustics, 32(1): 165–175, 2007.
[14]    Kane J., Gobl C., Identifying regions of non-modal phonation using features of the wavelet transform. The Laryngoscope, [in:] Proceedings of Interspeech 2011, pp. 177–180, 2011, https://doi.org/10.21437/Interspeech.2011-76.
[15]    Hillenbrand J., Houde R.A., Acoustic correlates of breathy vocal quality: dysphonic voices and continuous speech, Journal of Speech, Language, and Hearing Research, 39(2): 311–321, 1996, https://doi.org/10.1044/jshr.3902.311.
[16]    Degottex G., Kane J., Drugman T., Raitio T., Scherer S., COVAREP – a cooperative voice analysis repository for speech technologies, 2014 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 960–964, 2014, https://doi.org/10.1109/ICASSP.2014.6853739.
[17]    Rezaei N., Salehi A., An introduction to speech sciences (acoustic analysis of speech), Iranian Rehabilitation Journal, 4(4): 5–14, 2006.
[18]    Szklanny K., Gubrynowicz R., Iwanicka-Pronicka K., Tylki-Szymańska A., Analysis of voice quality in patients with late-onset pompe disease, Orphanet Journal of Rare Diseases, 11(1): 99, 2016, https://doi.org/10.1186/s13023-016-0480-5.
[19]    Szklanny K., Gubrynowicz R., Tylki-Szymańska A., Voice alterations in patients with Morquio A syndrome, Journal of Applied Genetics, 59(1): 73–80, 2018, https://doi.org/10.1007/s13353-017-0421-6.
[20]    Maryn Y., Roy N., De Bodt M., Van Cauwenberge P., Corthals P., Acoustic measurement of overall voice quality: A meta-analysis, The Journal of the Acoustical Society of America, 126(5): 2619–2634, 2009, https://doi.org/10.1121/1.3224706.
[21]    Yumoto E., Gould W.J., Baer T., Harmonics-to-noise ratio as an index of the degree of hoarseness, The Journal of the Acoustical Society of America, 71(6): 1544–1550, 1982, https://doi.org/10.1121/1.387808.
[22]    Hiraoka N., Kitazoe Y., Ueta H., Tanaka S., Tanabe M., Harmonic-intensity analysis of normal and hoarse voices, The Journal of the Acoustical Society of America, 76(6): 1648–1651, 1984, https://doi.org/10.1121/1.391611.
[23]    Hammarberg K., Kirkman M., Lacey S. de, Qualitative research methods: when to use them and how to judge them, Human Reproduction, 31(3): 498–501, 2016, https://doi.org/10.1093/humrep/dev334.
[24]    Parsa V., Jamieson D.G., Acoustic discrimination of pathological voice: sustained vowels versus continuous speech, Journal of Speech, Language, and Hearing Research, 44(2): 327–339, 2001, https://doi.org/10.1044/1092-4388(2001/027).
[25]    Yiu D. W., Lau C.M., Bruton G.D., International venturing by emerging economy firms: the effects of firm capabilities, home country networks, and corporate entrepreneurship, Journal of International Business Studies, 38(4): 519–540, 2007, https://doi.org/10.1057/palgrave.jibs.8400278.
[26]    Zraick R.I., Gentry M.A., Smith-Olinde L., Gregg B.A., The effect of speaking context on elicitation of habitual pitch, Journal of Voice, 20(4): 545–554, 2006, https://doi.org/10.1016/j.jvoice.2005.08.008.
[27]    Boersma P., Van Heuven V., Speak and unSpeak with PRAAT, Glot International, 5(9/10): 341–347, 2001.
[28]    Boersma P., Weenink D., Praat: doing phonetics by computer, version 5.3.51[computer program], 2007.
[29]    Van Rossum G., Drake Jr F.L., Python reference manual, Centrum voor Wiskunde en Informatica, Amsterdam, 1995.
[30]    Student, The probable error of a mean, Biometrika, 6(1): 1–25, 1908, https://doi.org/10.2307/2331554.  .
[31]    Mann H.B., Nonparametric tests against trend, Econometrica, 13(3): 245–259, 1945, https://doi.org/10.2307/1907187.
[32]    Trzaskoma D., Voice quality research. Development of a mobile application for measuring voice quality changes – voice quality analyzer [in Polish: Badanie jakości głosu. opracowanie aplikacji mobilnej służącej do pomiaru zmian jakości głosu – voice quality analyzer], Master's thesis, Polish-Japanese Academy of Information Technology, Warsaw, 2021.
[33]    Backstrom T., Eijnatten F. M., Kira M., A complexity perspective, [in:] Creating Sustainable Work Systems: Emerging Perspectives and Practice, Docherty P., Forslin J., (Rami) Shani A.B. (Eds.), Routledge, London, New York, pp. 56–66, 2002.
[34]    Kane J., Gobl C., Identifying regions of non-modal phonation using features of the wavelet transform, [in:] Proceedings of Interspeech 2011, pp. 177–180, 2011, https://doi.org/10.21437/Interspeech.2011-76.
[35]    Björkner E., Sundberg J., Alku P., Subglottal pressure and normalized amplitude quotient variation in classically trained baritone singers, Logopedics Phoniatrics Vocology, 31(4): 157–165, 2006, https://doi.org/10.1080/14015430600576055.
[36]    Taylor S., Dromey C., Nissen S.L., Tanner K., Eggett D., Corbin-Lewis K., Age-related changes in speech and voice: spectral and cepstral measures, Journal of Speech, Language, and Hearing Research, 63(3): 647–660, 2020, https://doi.org/10.1044/2019_JSLHR-19-00028.
[37]    Ferrand C.T., Harmonics-to-noise ratio: an index of vocal aging, Journal of Voice, 16(4): 480–487, 2002, https://doi.org/https://doi.org/10.1016/S0892-1997(02)00123-6.