10.24423/EngTrans.3106.2024
Challenges and Opportunities for the Use of Asphalt Mix Prepared with Ceramic Solid Waste in Emerging Countries
This research demonstrates the feasibility of using ceramic waste as a substitute for aggregates in asphalt mixtures prepared with locally available materials in Spain and Colombia. To achieve this, the asphalt mixtures were prepared following the design standards, test methods, practices, and specifications associated with quality assurance for asphalt materials. Test specimens were prepared using 30% and 35% ceramic waste as a substitute for aggregates. The results indicate that when the aggregates and binder meet the quality standards required for asphalt mixture design, the inclusion of classified ceramic waste as recycled aggregate, despite being considered inappropriate or critical material, provides mechanical benefits to the tested mixtures.
As a result, this study provides relevant information to companies engaged in asphalt mix production, highlighting potential business opportunities in adopting such technological initiatives. Additionally, taking advantage of tax exemption policies established to incentivize environmentally sustainable practices can further enhance the feasibility and attractiveness of these initiatives.
References
Kofteci S., Nazary M., Experimental study on usability of various construction wastes as fine aggregate in asphalt mixture, Construction and Building Materials, 185: 369–379, 2018, doi: 10.1016/j.conbuildmat.2018.07.059.
Solarte Vanegas N.C., Effect of asphalt mixture modified with the addition of crushed waste from the ceramic industry on the dynamic modulus [in Spanish: Efecto en el módulo dinámico de la mezcla asfáltica modificada con añadido de residuos triturados de la industria cerámica], Universitat Politécnica de Valencia, Valencia, 2022.
Pavement Interactive, Marshall Mix Design Washington, 2020. https://www.pavementinteractive.org/reference-desk/design/mix-design/marshall-mix-design/.
Ministry of Environment and Sustainable Development, National Environmental Health Assessment, Bogotá: Consulting contract 543 of 2012 funded by IDS , [in Spanish: Ministerio de Ambiente y Desarrollo Sostenible, Diagnóstico Nacional de Salud Ambiental, Bogotá: Contrato de consultoría 543 de 2012 con recursos provenientes del crédito IDS], Bogota, 2012.
Coffey M., Coad A., Collection of Municipal Solid Waste in Developing Countries, United Nations Human Settlements Programme (UN-HABITAT), 2010. Available: https://unhabitat.org/sites/default/files/2021/02/2010_collection-msw-developing-countries_un-habitat.pdf.
World Bank Group, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, 2018. Available: https://datatopics.worldbank.org/what-a-waste/.
Ministry of Environment and Sustainable Development, Resolution No. 0472 of 2017 Regulation of the comprehensive management of CDW waste [in Spanish: Ministerio de Ambiente y Desarrollo Sostenible, Resolución No. 0472 de 2017 Reglamentación de la gestión integral de los residuos RCD], Bogotá, 2017.
Universidad de Antofagasta, Clean Production: Principles and Tools [in Spanish: Producción Limpia: Principios y Herramientas], 2015. Available: http://www.cpl.cl/MTD/biblioteca.php?id=37.
Romero Flores P., Bonifaz García H., Revelo Corella M., Design of hot asphalt mixtures modified with elastomer (rubber) and polyethylene terephthalate recycled with AC-20 asphalt binder, [in Spanish: Diseño de Mezclas Asfálticas en Caliente Modificadas con Elastómero (caucho) y Tereftalato de Polietileno reciclados con Ligante Asfáltico AC-20], Thesis for the Engineering Degree, 2010, repository.espe.edu.ec, University of the Armed Forces ESPE (La Universidad de las Fuerzas Armadas ESPE), Quito, 2010.
Quintana Rondón H.A., Reyes Lizcano F. A., Figueroa Infante A.S., Rodríguez Rincón E., Real Triana C.M., Montealegre Elizalde T.A., Current state of research on modified asphalt mixtures in Colombia [in Spanish: Estado del conocimiento del estudio sobre mezclas asfálticas modificadas en Colombia], Infraestructura Vial, 10(19): 10–20, 2012.
Forigua Orjuela J.E., Pedraza Díaz E., Design of asphalt mixtures modified through the addition of plastic waste [in Spanish: Diseño de mezclas asfálticas modificadas mediante la adición de desperdicios plásticos], Universidad Católica de Colombia, Bogotá, 2014.
Instituto de Desarrollo Urbano, General Technical Specifications: Hot mix asphalt with rubber-modified asphalt using wet and dry methods [in Spanish: Especificaciones Técnicas Generales: Mezcla asfáltica en caliente con asfalto modificado con caucho por vía húmeda y vía seca], 625-18, 626-18, 2018.
Arabani M., Mirabdolazimi S.M., Experimental investigation of the fatigue behavior of asphalt concrete mixtures containing waste iron powder, Materials Science and Engineering A, 528(10–11): 3866–3870, 2011, doi: 10.1016/j.msea.2011.01.099.
Vea Folch F.J., Navas Gómez J., Silvestre Martínez R., Medel Colmenar E., García García A., Use of ceramic waste from the tile industry in hot bituminous mixes [in Spanish: Uso de residuos cerámicos de la industria azulejera en mezclas bituminosas en caliente], Asfalto y Pavimentación, 8(III): 27–38, 2013.
Silvestre R., Medel E., García A., Navas J., Using ceramic wastes from tile industry as a partial substitute of natural aggregates in hot mix asphalt binder courses, Construction and Building Materials, 45: 115–122, 2013, doi: 10.1016/j.conbuildmat.2013.03.058.
Silvestre R., Medel E., García A., Navas J., Utilizing recycled ceramic aggregates obtained from tile industry in the design of open graded wearing course on both laboratory and in situ basis, Materials and Design, 50: 471–478, 2013, doi: 10.1016/j.matdes.2013.03.041.
Kara Ç., Karacasu M., Use of ceramic wastes in road pavement design, [in:] Proceedings of the World Congress on New Technologies (NewTech 2015), Paper 226:1-6, Barcelona, Spain, 2015.
Huang B., Dong Q., Burdette E.G., Laboratory evaluation of incorporating waste ceramic materials into Portland cement and asphaltic concrete, Construction and Building Materials, 23(12): 3451–3456, 2009, doi: 10.1016/j.conbuildmat.2009.08.024.
Muniandy R., Ismail D. H., Hassim S., Performance of recycled ceramic waste as aggregates in hot mix asphalt (HMA), Journal of Material Cycles and Waste Management, 20: 844–849, 2018, doi: 10.1007/s10163-017-0645-x.
Wan J., Wu S., Xiao Y., Liu Q., Schlangen E., Characteristics of ceramic fiber modified asphalt mortar, Materials, 9(9): 788, 2016, doi: 10.3390/ma9090788.
Huang Q., Qian Z., Hu J., Zheng D., Evaluation of stone mastic asphalt containing ceramic waste aggregate for cooling asphalt pavement, Materials, 13(13): 2964, 2020, doi: 10.3390/ma13132964.
Huang, Y., Bird, R.N., Heidrich, O, A review of the use of recycled solid waste materials in asphalt pavements, Resources, Conservation and Recycling, 52(1): 58–73, 2007, doi: 10.1016/j.resconrec.2007.02.002.
Flórez-Vargas A.O., Sánchez-Molina J., Blanco-Meneses D.S., Clays from geological formations of a metropolitan area, their use in the ceramic industry and impact on the regional economy [in Spanish: Las arcillas de las formaciones geológicas de un área metropolitana, su uso en la industria cerámica e impacto en la economía regional], Revista EIA, 15(30): 133–150, 2018, doi: 10.24050/reia.v15i30.1219.
Cerámica Italia S.A, Management of ceramic breakage at Cerámica Italia [in Spanish: Manejo de Rotura Cerámica Italia], Cerámica Italia, San José de Cúcuta, 2014.
Soni A., Kumar Das P., Hashmi A.W., Yusuf M., Kamyab H., Chelliapan S., Challenges and opportunities of utilizing municipal solid waste as alternative building materials for sustainable development goals: A review, Sustainable Chemistry and Pharmacy, 27: 100706, 2022, doi: 10.1016/j.scp.2022.100706.
Esmaeili J., Aslani H., Use of copper mine tailing in concrete: strength characteristics and durability performance, Journal of Materials Cycles Waste Management, 21(3): 729–741, 2019, doi: 10.1007/s10163-019-00831-7.
Boom Cárcamo E.A., Peñabaena Niebles R., Opportunities and challenges for the waste management in emerging and frontier countries through industrial symbiosis, Journal of Cleaner Production, 363: 132607, 2022, doi: 10.1016/j.jclepro.2022.132607.
Patel J.V., Varia H. R., Mishra C.B., Design of bituminous mix with and without partial replacement of waste ceramic tiles material, International Journal of Engineering Research & Technology, 6(4): 752–755, 2017.
Shamsaei M., Khafajeh R., Ghasem H., Experimental evaluation of cerami5c waste as filler in hot mix asphalt, Clean Technologies and Environmental Policy, 22: 535–543, 2020, doi: 10.1007/s10098-019-01788-9.
Kara Ç., Karacasu M., Investigation of waste ceramic tile additive in hot mix asphalt using fuzzy logic approach, Construction and Building Materials, 141: 598–607, 2017, doi: 10.1016/j.conbuildmat.2017.03.025.
Andrzejuk W., Barnat-Hunek D., Siddique R., Zegardło B., Łagód G., Application of recycled ceramic aggregates for the production of mineral-asphalt mixtures, Materials, 11(5): 658, 2018, doi: 10.3390/ma11050658.
Gonzalez Gonzalez T.A., Beleño Durán M.F., Rheological characteristics of 60/70 asphalt modified with ceramic residue [in Spanish: Reología de asfaltos 60/70 modificados con residuo de cerámica], Thesis submitted in partial fulfillment of the requirements for the degree of Civil Engineer, Universidad Piloto de Colombia, October 2018. Available: http://repository.unipiloto.edu.co/handle/20.500.12277/1503.
Cerámica Italia S.A, Description of the Production Process [in Spanish: Descripción del Proceso Productivo], Cerámica Italia, San José de Cúcuta, 2017.
Huang B., Dong Q., Burdette E., Laboratory evaluation of incorporating waste ceramic materials into Portland cement and asphaltic concrete, Construction and Building Materials, 23(12): 3451–3456, 2009, doi: 10.1016/j.conbuildmat.2009.08.024.
World Food Programme, Logistics Capacity Assessment, 10 02 2022. Available: https://dlca.logcluster.org/colombia.
Tejaswini M.S.S.R., Pathak P., Gupta D.K., Sustainable approach for valorization of solid wastes as a secondary resource through urban mining, Journal of Environmental Management, 319: 115727, 2022, doi: 10.1016/j.jenvman.2022.115727.
DOI: 10.24423/EngTrans.3106.2024