10.24423/engtrans.308.2016
The Effect of Process Parameters on Residual Stress in a Friction Stir Processed Cast Aluminium Alloy AlSi9Mg
References
Ciućka T., Influence of vibration during crystallization on mechanical properties and porosity of EN AC –AlSI17 Alloy, Archives of Foundry Engineering, 13(1): 5–18, 2013.
Zyska A., Konopka Z., Łągiewka M., Nadolski M., Optimization of squeeze parameters and modification of AlSi7Mg alloy, Archives of Foundry Engineering, 13(2): 113–116, 2013.
Wrobel T., Szajnar J., Modification of pure al and AlSi2 alloy primary structure with use of electromagnetic stirring method, Archives of Metallurgy and Materials, 58(3): 941–944, 2013.
Węglowski M.St., Microstructure of cast aluminium alloy AlSi9Mg after FSP process, Archives of Foundry Engineering, 14(3): 75–78, 2014.
Węglowski M. St., Dymek S., Friction stir processing of an AlSi6Cu4 cast aluminium alloy, Archives of Foundry Engineering, 11(2): 213–217, 2011.
Węglowski M.St., Dymek S., Microstructural modification of cast aluminium alloy AlSi9Mg via friction modified processing, Archives of Metallurgy and Materials, 57(1): 71–78, 2012.
Darras B.M., Khraisheh M.K., et al., Friction stir processing of commercial AZ31 magnesium alloy, Journal of Materials Processing Technology, 191: 77–81, 2007.
Węglowski M.St., Pietras A., Friction stir processing – analysis of the process, Archives of Metallurgy and Materials, 56: 779–788, 2011.
Węglowski M.St., Dymek S., Hamilton C., Experimental investigation and modelling of friction stir processing of cast aluminium alloy AlSi9Mg, Bulletin of the Polish Academy of Sciences-Technical Sciences, 61: 893–904, 2013.
Węglowski M.St., Kwieciński K., Krasnowski K., Jachym R., Characteristics of Nd: YAG laser welded joints of dual phase steel, Archives of Civil and Mechanical Engineering, 9(4): 85–97, 2009.
Hamilton C., Węglowski M.St., Dymek S., Sedek P., Using a coupled thermal/material flow model to predict residual stress in friction stir processed AlMg9Si, Journal of Materials Engineering and Performance, 24: 1305–1312, 2015.
Sadeghi S., Najafabadi M.A., et al., Using ultrasonic waves and finite element method to evaluate through-thickness residual stresses distribution in the friction stir welding of aluminium plates, Materials & Design, 52,: 870–880, 2013.
Liu Ch., Yi X., Residual stress measurement on AA6061-T6 aluminium alloy friction stir butt welds using contour method, Materials and Design, 46: 366–371, 2013.
Ghidini T., Vugrin T., Dalle Donne C., Residual stresses, defects and non-destructive evaluation of FSW joints, Welding International, 19(10): 783–790, 2005.
Woo W., Choo H., Brown D.W., Feng Z., Liaw P.K., Angular distortion and through-thickness residual stress distribution in the friction-stir processed 6061-T6 aluminium alloy, Materials Science and Engineering A, 437(1): 64–69, 2006.
Peel M., Steuwer A., Preuss M., Withers P.J., Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Materialia, 51(16): 4791–4801, 2003.
Węglowski M.St., Sedek P., Hamilton C., Experimental and numerical analysis of residual stress in cast aluminium alloy after FSP process, Key Engineering Materials, 682: 18–23, 2016.
Hamilton C., Kopyściański M., Senkov O., Dymek S., A coupled thermal/material flow model of friction stir welding applied to Sc-modified aluminium alloys, Metallurgical and Materials Transactions A, 44: 1730–1740, 2013.
Kishta E.E.M., Abed F.H., Darras B.M., Nonlinear finite element simulation of friction stir processing of marine grade 5083 aluminium alloy, Engineering Transactions, 62(4): 313–328, 2014.
Hamilton C., Sommers A., Dymek S., A thermal model of friction stir welding applied to Sc-modified Al–Zn–Mg–Cu alloy extrusions, International Journal of Machine Tools & Manufacture, 49: 230–238, 2009.
DOI: 10.24423/engtrans.308.2016