10.24423/EngTrans.1326.20211004
Application of Double Q Wavelet-based Sparse Decomposition to Fault Feature Extraction of Wind Turbine Planetary Gearbox
References
http://www.xinhuanet.com/english/2021-07/12/c_1310057114.htm, accessed Aug. 18, 2021.
https://gwec.net/global-wind-report-2021/ Global wind report 2021.
Feng Z., Zuo M.J., Vibration signal models for fault diagnosis of planetary gearboxes, Journal of Sound and Vibration, 331(22): 4919–4939, 2012, doi: 10.1016/j.jsv.2012.05.039.
Feng Z., Chen X., Liang M., Iterative generalized synchro- squeezing transform for fault diagnosis of wind turbine planetary gearbox under nonstationary conditions, Mechanical Systems and Signal Processing, 52–53: 360–375, 2015, doi: 10.1016/j.ymssp.2014.07.009.
Feng Z., Liang M., Fault diagnosis of wind turbine planetary gearbox under nonstationary conditions via adaptive optimal kernel time-frequency analysis, Renewable Energy, 66: 468–477, 2014, doi: 10.1016/j.renene.2013.12.047.
Lei Y., Han D., Lin J., He Z., Planetary gearbox fault diagnosis using an adaptive stochastic resonance method, Mechanical Systems and Signal Processing, 38(1): 113–124, 2013, doi: 10.1016/j.ymssp.2012.06.021.
Zhang J., Zhong M., Zhang J.Q., Yao L.G., Zheng J.D., An integrating methodology of Teager energy operator and stochastic resonance for incipient fault diagnosis of planetary gearbox [in Chinese], Journal of Vibration Engineering, 32(6): 1084–1093, 2019.
Liang X., Zuo M. J., Hoseini M.R., Vibration signal modeling of a planetary gear set for tooth crack detection, Engineering Failure Analysis, 48: 185–200, 2015, doi: 10.1016/j.engfailanal.2014.11.015.
Selesnick I.W., Resonance-based signal decomposition: a new sparsity-enabled signal analysis method, Signal Processing, 91(12): 2793–2809, 2011, doi: /10.1016/j.sigpro.2010.10.018.
Selesnick I.W., Wavelet transform with tunable Q-factor, IEEE Transactions on Signal Processing, 59(8): 3560–3575, 2011, doi: 10.1109/TSP.2011.2143711.
Cai G.G., Chen X.F., He Z.J., Sparsity-enabled signal decomposition using tunable Q-factor wavelet transform for fault feature extraction of gearbox, Mechanical Systems and Signal Processing, 41(1–2): 34–53, 2013, doi: 10.1016/j.ymssp.2013.06.035.
Du Z., Chen X., Zhang H., Yan R., Sparse feature identification based on union of redundant dictionary for wind turbine gearbox fault diagnosis, IEEE Transactions on Industrial Electronics, 62(10): 6594–6605, 2015, doi: 10.1109/TIE.2015.2464297.
He W., Chen B., Zeng N., Zi Y., Sparsity-based signal extraction using dual Q-factors for gearbox fault detection, ISA Transactions, 79: 147–160, 2018, doi: 10.1016/j.isatra.2018.05.009.
Teng W., Liu Y., Huang Y., Song L., Liu Y., Ma Z., Fault detection of planetary subassemblies in a wind turbine gearbox using TQWT based sparse representation, Journal of Sound and Vibration, 490: 115707, 2021, doi: 10.1016/j.jsv.2020.115707.
Selesnick I., Sparse regularization via convex analysis, IEEE Transactions on Signal Processing, 65(17): 4481–4494, 2017, doi: 10.1109/TSP.2017.2711501.
Cai G., Selesnick I.W., Wang S., Dai W., Zhu Z., Sparsity-enhanced signal decomposition via generalized minimax-concave penalty for gearbox fault diagnosis, Journal of Sound and Vibration, 432: 213–234, 2018, doi: 10.1016/j.jsv.2018.06.037.
Wang L., Cai G., Wang .J, Jiang X., Zhu Z., Dual-enhanced sparse decomposition for wind turbine gearbox fault diagnosis, IEEE Transactions on Instrumentation and Measurement, 68(2): 450–461, 2019, doi: 10.1109/TIM.2018.2851423.
Daubechies I., Ten Lectures on Wavelets, Philadelphia, PA: SIAM, 1992.
Figueiredo M.A.T., Bioucas-Dias J.M., Afonso M.V., Fast frame-based image deconvolution using variable splitting and constrained optimization, [in:] 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pp. 109–112, 2009, doi: 10.1109/SSP.2009.5278628.
Antoni J., Fast computation of the kurtogram for the detection of transient faults, Mechanical Systems and Signal Processing, 21(1): 108–124, 2007, doi: 10.1016/j.ymssp.2005.12.002.
DOI: 10.24423/EngTrans.1326.20211004