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The article presents and experimentally confirms two approaches to the problem of de-
termining the working area of parallel robots using the example of a planar robot DexTAR
with two degrees of freedom. The proposed approaches are based on the use of constraint
equations of coordinates. In the first approach, the original kinematic equations of coordinates
in the six-dimensional space (two coordinates describing the position of the output link and
four coordinates – the rotation angles of the rods) followed by projecting the solution onto
the two-dimensional plane is used. In the second approach, the system of constraint equations
is reduced to a system of inequalities describing the coordinates of the output link of the
robot, which are solved in a two-dimensional Euclidean space. The results of the computa-
tional experiments are given. As an algorithmic basis of the proposed approaches, the method
of non-uniform coverings is used, which obtains the external and internal approximation of the
solution set of equality/inequality systems with a given accuracy. The approximation is a set
of boxes. It is shown that in the first approach, it is more efficient to apply interval estimates
that coincide with the extremes of the function on the box, and in the second approach, grid
approximation performs better due to multiple occurrences of variables in inequalities.

Key words: parallel robot; working area; non-uniform coverings; interval analysis; approxi-
mation; algorithm; multiple solutions.

1. Introduction

Over the past decades, parallel robots have attracted the attention of a large
number of scientists from around the world [9, 11, 12, 18, 20]. Such robots have
a number of advantages, such as rigidity and positioning accuracy, which led to
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their extensive use in industry. An important task to be solved when designing
robots is to determine its working area, i.e. sets of points that can be reached by
a robot tool (end-effector). The size of the working area is a key characteristic
of the robot. The working area itself serves as the basis for working tool path
planning.

Several methods for the working area determination have been proposed so
far [1, 2, 17]. A simple representation of the constraints for a planar 3-RPR
(R stands for a passive revolute joint, and P for an actuated prismatic joint)
robot was considered in [14]. It is shown that interval analysis is an effective
tool for approximating the working area. The non-uniform coverings method
is primarily aimed for solving global optimization problems. For the detailed
description please refer to [4, 8]. It was successfully tested on some types of
parallel robots [3, 5]. The method can be used for constructing coverage for any
number of dimensions, including 3D working area [10].

In this work we propose two approaches to determining the robot working
area. The first approach (approach A) directly uses the system of kinematic
equations. The second approach (approach B) consists in reducing the system of
kinematic equations for the rods to quadratic equations. Then the solvability
of the system of quadratic equations is formulated as a set of inequalities with
fewer variables. A theoretical and experimental comparison of the efficiency of
the proposed approaches is performed for the DexTAR robot [19].

2. Formulation of the problem

The planar RRRRR parallel robot DexTAR is a four-link mechanism con-
trolled by two actuators (Fig. 1a). The robot has two degrees of freedom. As
input variables, we take the rotation angles of the qA and qD rods and the out-
put variables are the coordinates xP and yP of the output tool P (Fig. 1b).

a) b)

Fig. 1. Robot RRRRR: a) robot layout, b) block diagram of the robot.
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The robot includes 4 rods of constant length la, lb, lc, ld, la = ld, lb = lc.
Consider the case when the engines are located above the plane of the working
area and do not affect it. The distance between the fixed ends of the rods is d.
The letters R in the abbreviation RRRRR designate 5 rotational kinematic pairs
(D, C, P, B, A), two of which corresponding to actuators are underlined. Rotation
of the actuators determines the forward movement of the working tool P along
the axes. Kinematic equations connecting given geometrical parameters of the
robot and the rods rotation angles looks as follows:

(2.1)



xp − lb · cos qB − la · cos qA −
d

2
= 0,

xp − ld · cos qD − lc · cos qC +
d

2
= 0,

yp − la · sin qA − lb · sin qB = 0,

yp − ld · sin qD − lc · sin qC = 0.

The system of Eqs (2.1) has six variables xP , yP , qA, qB, qC , qD. Below we
propose a transformation that reduces the dimension (number of variable) of the
system. Consider the kinematic chain DCP (Fig. 2) in a X ′O′Y ′ coordinate sys-
tem, where O′ is located in the center of the rotary joint D. Using the transition
from the XOY coordinate system to the X ′O′Y ′ coordinate system, we express
the coordinates of points C and P :

(2.2)

x
′
C,P = xC,P +

d

2
,

y′C,P = yC,P .

Fig. 2. Kinematic chain DCP.
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We write the constraint equations for the DCP circuit, taking into account (2.2):

(2.3)


x′C

2 + y′C
2 = a2,

(x′P − x′C)2 + (y′P − y′C)2 = b2.

Subtract from the second equation the first equation of system (2.3) and get

(2.4) x′P
2 − 2x′Cx

′
P + y′P

2 − 2y′Cy
′
P = b2 − a2.

In Eq. (2.4) we express y′C

(2.5) y′C = −
x′Cx

′
P

y′P
+
x′P

2

2y′P
+
y′P
2

+
a2 − b2

2y′P
.

Substitute the expression (2.5) in the first equation of the system (2.3):

(2.6) x′C
2

+

(
−
x′Cx

′
P

y′P
+
x′P

2

2y′P
+
y′P
2

+
a2 − b2

2y′P

)2

= a2.

The Eq. (2.6) can be rewritten as

(2.7)

(
1 +

x′P
2

y′P
2

)
x′C

2
+

[
2

(
−
x′P
y′P

)(
x′P

2

2y′P
+
y′P
2

+
a2 − b2

2y′P

)]
x′C

+

(x′P 2

2y′P
+
y′P
2

+
a2 − b2

2y′P

)2

− a2
 = 0.

From Eq. (2.7) we derive the discriminant expression:

(2.8) D1 =

[
2

(
−
x′P
y′P

)(
x′P

2

2y′P
+
y′P
2

+
a2 − b2

2y′P

)]2

− 4

(
1 +

x′P
2

y′P
2

)(x′P 2

2y′P
+
y′P
2

+
a2 − b2

2y′P

)2

− a2
.

In Eq. (2.8), we move from the X ′O′Y ′ coordinate system to the XOY system
and obtain:

(2.9) D1 =

[
2

(
−
xP + d

2

yP

)(
(xP + d

2)2

2yP
+
yP
2

+
a2 − b2

2yP

)]2

− 4

(
1 +

(xP + d
2)2

yP 2

)((xP + d
2)2

2yP
+
yP
2

+
a2 − b2

2yP

)2

− a2
.



APPROACHES TO THE DETERMINATION OF THE WORKING AREA. . . 337

It is obvious that system (2.3) has a solution if and only if the quadratic Eq. (2.7)
is solvable, i.e. when in (2.9) D1 ≥ 0. Performing similar transformations for the
kinematic chain ABP, we get

(2.10) D2 =

[
2

(
−
xP − d

2

yP

)(
(xP − d

2)2

2yP
+
yP
2

+
a2 − b2

2yP

)]2

− 4

(
1 +

(xP − d
2)2

yP 2

)((xP − d
2)2

2yP
+
yP
2

+
a2 − b2

2yP

)2

− a2
.

Note that the working area includes all points with coordinates for which in-
equalities are simultaneously satisfied

(2.11)

{
g1(x) ≥ 0,

g2(x) ≤ 0,

where g1(x) and g2(x) denote −D1 and −D2, respectively.

3. Algorithms for the working area approximation

The proposed approach is based on the non-uniform coverings methods, pro-
posed in [4, 8] for global optimization. To calculate the estimates, we investigate
the possibility of using both the interval analysis [13] and the grid approximation.

3.1. Systems of equations

To approximate the system (2.1), we used the first approach. Consider a sys-
tem of nonlinear algebraic equations written in a general form:

(3.1)


g1(x) = 0,

. . .

gm(x) = 0,

ai ≤ xi ≤ bi, i = 1, ..., n.

The initial box Q that encloses the whole solution set X is defined by interval
constraints ai ≤ xi ≤ bi, i = 1, ..., n. The proposed approach (approach A)
constructs a coverage of the set X of solutions of the system (3.1). The coverage
is a set of boxes, with a diameter less or equal to the prescribed accuracy δ.

Consider an arbitrary box B. Let m(B) = maxi=1,...,m minx∈B gi(x) and
M(B) = mini=1,...,m maxx∈B gi(x). If m(B) > 0 or M(B) < 0 then B con-
tains no feasible points for a system (3.1). The proposed algorithm, shown in
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the Fig. 3 discards such boxes. If a box cannot be discarded it is partitioned
into two smaller boxes unless its diameter is below the prescribed accuracy δ.
The algorithm works with three lists of n-dimensional boxes P (current list),
PA (the coverage) and PE (discarded boxes).

Fig. 3. Algorithm A for approximating a working area.

The algorithm works as follows:
1. At the beginning the list P consists of only one initial box Q, that includes

the whole range of theoretically maximum limits of the set X. Lists PA
and PE are initially empty.

2. Extract from the list P a box B.
3. Compute m(B) and M(B).
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4. If m(B) > 0 or M(B) < 0, then the box is excluded from further consid-
eration, falling into the list PE , that is, PE := PE ∪ {B}.

5. If the box has a diameter less than or equal to the given parameter δ, that
is, d(B) ≤ δ characterizing the accuracy of the approximation, it is added
to the PA list, that is, PA := PA ∪ {B}.

6. In either case, the box is divided into two equal boxes B1 and B2 along
the longest edge. Boxes are appended to the end of the list P, that is,
P := P ∪ {B}.

7. The algorithm terminates when the list P becomes empty, otherwise steps
2–8 are repeated.

The finiteness of the number of steps of the algorithm follows from the limit
on the minimum diameter of a box.

Usually we are interested in a projection of a set X to a set of axes. For
instance in the example under consideration the set PA is a subset of R6. Since
the task is to find the working area in the parameter space xP , yP , it is necessary
to project PA into R2. Since the sets are boxes, getting a projection is not
difficult.

3.2. Systems of inequalities

To approximate the systems of inequalities (2.11), we used the second ap-
proach described in [5, 7]. For the convenience of the reader we reproduce it here.
The algorithm works with a system of inequalities written in a general form:

(3.2)


g1(x) ≤ 0,

. . .

gm(x) ≤ 0,

ai ≤ xi ≤ bi, i = 1, ..., n.

The initial box Q that encloses the whole solution set X is defined by in-
terval constraints ai ≤ xi ≤ bi, i = 1, ..., n. Consider an arbitrary box B. Let
m(B) = maxi=1,...,m minx∈B gi(x) and M(B) = maxi=1,...,m maxx∈B gi(x). No-
tice that M(B) is defined differently from the equality case. If m(B) > 0 then
B contains no feasible points for a system (3.2). The proposed algorithm, shown
in the Fig. 3 discards such boxes. If M(B) ≤ 0 then every point of a box B is
a feasible solution. Therefore it can be added to the coverage as an inner box.
If a box cannot be discarded it is partitioned into two smaller boxes unless its
diameter is below the prescribed accuracy δ. Such boxes are added to the bound-
ary approximation. The algorithm (Fig. 4) works with four lists of boxes P, PI ,
PA, and PE .
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Fig. 4. The algorithm B for approximating the working area.

The algorithm works as follows:
1. At the beginning the list P consists of only one initial box Q, that includes

the whole range of theoretically maximum limits of the set X. Lists PA,
PI and PE are initially empty.

2. Extract from the list P a box B.
3. Compute m(B) and M(B).
4. If m(B) > 0, then the box is excluded from further consideration, falling

into the list PE , that is, PE := PE ∪ {B}.
5. If M(B) ≤ 0, it is added to the PI list, that is, PI := PI ∪ {B}.
6. If the box has a diameter less than or equal to the given parameter δ, that

is, d(B) ≤ δ characterizing the accuracy of the approximation, it is added
to the PA list, that is, PA := PA ∪ {B}.
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7. In either case, the box is divided into two equal boxes B1 and B2 along
the longest edge. Boxes are appended to the end of the list P, that is,
P := P ∪ {B}.

8. The algorithm terminates when the list P becomes empty, otherwise steps
2–8 are repeated.

The finiteness of the number of steps of the algorithm follows from the limit
on the minimum diameter of a box.

As for approach A, the finiteness of the number of steps of the algorithm
follows from the restriction on the minimum diameter of the box. The approxi-
mation is assumed to be equal to the union of the sets PB = PA ∪ PI .

4. Realization of algorithms and results
of computational experiments

The considered algorithms require finding the minimum and maximum of the
functions included in the left side of equations and/or inequalities. In general,
the exact minimum is difficult to find and, therefore, estimates are used. Initially,
interval estimations were applied in both methods.

Interval methods allows to compute an enclosing interval for a function from
intervals on its parameters. This process can be automated by applying interval
arithmetic rules. The detailed information on interval analysis can be found
in [13].

In the approach A, interval estimates are the ideal choice (for our particular
robot). This is due to the fact that all variables are included in the evaluated
expressions once. Therefore the interval estimates coincide with the extrema of
the functions gi on the box, i.e. cannot be improved.

In the approach B with the system (2.11), expressions contain multiple occur-
rences of variables. The verification showed that interval estimates do not allow
obtaining approximations of acceptable quality. Therefore, another method has
been applied, consisting of the approximate estimation of the extrema of a func-
tion fi on a uniform grid. In each box, the function on the left side of the inequal-
ity is calculated at the nodes of a rectangular grid of size N×N , where N = 100.
The minimum and maximum on the grid of the function fi values on the grid are
taken as the estimate of the minimum and maximum of the function on the box.

It can be observed that the size of the grid grows exponentially with increas-
ing the number of parameters. This severe problem can be addressed by the
following two approaches. The first approach is to apply parallelization – differ-
ent grid nodes can be computed on different cores. The second approach is to
use of quasi-random low-discrepancy sequences (e.g. [15]) instead of rectangular
grids.
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The calculations were carried out on a personal computer that has a quad-
core Intel i7 processor with a clock frequency of 2.4 GHz and 8 GB RAM. The
algorithm is implemented in C++ using our own interval library [16].

The Fig. 5 shows the approximations of the working area obtained using
approaches A and B. The simulation was performed for the following parameters:
la = ld = 72 mm, lb = lc = 87 mm, d = 60 mm. Each figure shows both the
entire working area (left) and its enlarged fragment (right).

a)

b)

Fig. 5. Working area: a) based on approach A; b) based on approach B.

The calculation results allow us to draw the following conclusions. The work-
ing area with both approaches has the same shape and size. The quality of the
approximation obtained with the help of the approach B is significantly higher.
This can be easily explained by the higher number of dimensions in the first
case (6 vs. 2). Thea approach A requires significantly more resources: the time
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of calculations by approach A was 39 minutes 40 seconds, and approach B –
3 minutes and 50 seconds.

It is worth noting the constructed approximaton can be used for computing
the volume of the robot’s workspace. Clearly this area is a function of the rod’s
lengths. Using approach B, we determine the area of the workspace for different
ratio of lengths lb/la, when the sum of the lengths of the rods is fixed: la + lb =
160 mm. Figure 6 shows the value of the workspace’s area when the ratio lb/la
ranges from 0.7 to 1.25.

Fig. 6. The dependence of the area of the working area on the ratio of the length of the rods.

It can be seen from the figure that the maximum area of the working area is
achieved with the ratio of lengths lb/la = 1, i.e. la = lb = lc = lb = 80 mm. The
area of the working space is 61400.3 mm2.

5. Conclusion

The article proposed and tested two approaches to the automated approxi-
mation of the robot’s working area. The resulting approximation can be used for
the robot’s path planning and for working area volume computation.

The approaches can be used for constructing coverage for any number of
dimensions. Approach A determines a set of solutions of a system of kinematic
equations. Approach B requires a preliminary transformation of a system of con-
straint equations to a system of inequalities. This normally results in a decrease
of the number of parameters. Both approaches are implemented in software. The
performed computational experiments showed that approach B allows obtaining
much better approximations w.r.t. approach A in a less time. The disadvantage
of approach B is the need to transform the system of inequalities to the desired
type manually.

It should be noted that the proposed approaches are quite general and can
be applied to compute the working areas for a potentially arbitrary manipulator.
Indeed it is sufficient to derive a system of kinematic Eqs (3.1) or (optionally) sys-
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tem of inequality (3.2). However when applying to complex robotic systems the
approach may be very resource demanding. This can be mitigated by applying
high-performance computing methods, e.g. by employing techniques elaborated
in parallel global optimization [6].
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