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The present paper investigates lengthwise crack behaviour in three-axial inhomogeneous
non-linear elastic cantilever beams, i.e., beams which exhibit inhomogeneous material proper-
ties along the width, height and length. The non-linear mechanical behaviour of the inhomo-
geneous material is described by the Ramberg-Osgood equation assuming that the modulus
of elasticity varies linearly along the width, height and length of beams. A solution to the
strain energy release rate is derived by considering the balance of the energy. The results ob-
tained in the present paper indicate that the three-axial inhomogeneous material properties
have a significant influence on the strain energy release rate in non-linear elastic beams.
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1. Introduction

An adequate crack analysis in inhomogeneous engineering structures is very
important for the evaluation of their integrity, reliability and durability. De-
veloping techniques for such analyses requires consideration of various physical
features. One of the most important features is the fact that the properties of in-
homogeneous materials depend on the location, i.e., the properties are functions
of the coordinates [1–3]. It should be noted that the growing interest towards the
inhomogeneous materials is due mainly to the increasing application of function-
ally graded materials and structures in aeronautics, nuclear reactors, electron-
ics, energy sector, biomedicine, etc. [4–6]. For the last decades, the functionally
graded materials have attracted the attention mostly because their properties
can be varied smoothly along one or more spatial coordinates during manufac-
turing so as to optimise the reaction of functionally graded structural members
and components to the externally applied mechanical loads and influences.
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The dependences of material properties on the coordinates significantly com-
plicate the fracture analysis of inhomogeneous structures in comparison with the
structures made of traditional homogeneous structural materials. Another impor-
tant physical feature that should be taken into account in fracture analyses is the
non-linear mechanical behaviour of the inhomogeneous materials. Recently, sev-
eral papers which deal with a lengthwise fracture in inhomogeneous (functionally
graded) beam structures exhibiting material non-linearity have been published
[7–9]. The material non-linearity was described by using power law stress-strain
relations. It was assumed that the coefficient in the power law stress-strain rela-
tion varies continuously along the beam height, i.e., the beam exhibits material
inhomogeneity in height direction only [7, 8]. Additionally, analyses of length-
wise crack in non-linear elastic beam configurations were performed assuming
that the coefficient in the power law stress-strain relation varies in both height
and width directions of the beam (the coefficient is distributed symmetrically
with respect to the vertical centroidal axis of the beam cross-section) [9]. Non-
linear solutions to the strain energy release rate were derived by analysing the
complementary strain energy cumulated in the beams [7–9].

The present paper aims to develop a lengthwise crack analysis of a non-linear
elastic cantilever beam which exhibits smooth three-axial material inhomogene-
ity (it is assumed that the modulus of elasticity is distributed linearly along the
width, height and length of the beam). The non-linear mechanical behaviour
of the inhomogeneous material is described by applying the Ramberg-Osgood
stress-strain relation. The crack is studied in terms of the strain energy release
rate by considering the energy balance. It should be mentioned that the crack
analysis developed in the present paper holds for non-linear elastic behaviour
of the material. The analysis is also applicable for elastic-plastic behaviour if
the beam undergoes active deformation, i.e., if the external loading increases
only [10].

2. Study of the strain energy release rate

A lengthwise crack of length a is located in the mid-plane of the inhomoge-
neous beam configuration shown in Fig. 1. Here, it should be mentioned that one
of the motives for the present study is that certain kinds of inhomogeneous ma-
terials, such as functionally graded materials, can be built up layer by layer [5],
which is a premise for the appearance of lengthwise cracks between layers. The
cross-section of the beam is a rectangle of width b, and height 2h. The length of
the beam is denoted by l. The beam is clamped in section K2S2T2. The external
loading consists of two bending moments ML and MU applied at the free ends
of the lower and upper crack arms, respectively (Fig. 1). The beam under con-
sideration exhibits inhomogeneous material properties along the width, height
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Fig. 1. Geometry and loading of a three-axial inhomogeneous non-linear elastic cantilever
beam containing a lengthwise crack.

and length (it is assumed that the modulus of elasticity varies linearly along the
width, height and length of the beam). Besides, it is assumed that the beam
exhibits non-linear mechanical behaviour of the material which is described by
using the Ramberg-Osgood stress-strain relation.

The lengthwise crack is studied in terms of the strain energy release rateG, by
analysing the energy balance. Assuming a small increase δa of the crack length,
the energy balance is written as

(2.1) MLδϕL +MUδϕU =
∂U

∂a
δa+Gbδa,

where ϕL and ϕU are, respectively, the angles of rotation of the free ends of the
lower and upper crack arms, U is the strain energy. From (2.1), one obtains

(2.2) G =
ML

b

∂ϕL
∂a

+
MU

b

∂ϕU
∂a
− 1

b

∂U

∂a
.
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By applying the Castigliano’s theorem for structures exhibiting material non-
linearity, ϕL and ϕU are written as

ϕL =
∂U∗

∂ML
,(2.3)

ϕU =
∂U∗

∂MU
,(2.4)

where U∗ is the complementary strain energy.
The strain energy cumulated in the beam is obtained as

(2.5) U = UL + UU + UR,

where UL, UU , and UR are, respectively, the strain energies in the lower and
upper crack arms, and the uncracked beam portion, a ≤ x4 ≤ l (Fig. 1).

The strain energy in the lower crack arm is expressed as

(2.6) UL =

aˆ

0

b
2ˆ

− b
2

h
2ˆ

−h
2

u0L dx4 dy1 dz1,

where u0L is the strain energy density in the lower crack arm, and y1 and z1 are
the centroidal axes of the lower crack arm (Fig. 2).

Fig. 2. Free end of the lower crack arm.

Analogically, the strain energies in the upper crack arm and the uncracked
beam portion are written, respectively, as

(2.7) UU =

aˆ

0

b
2ˆ

− b
2

h
2ˆ

−h
2

u0U dx4 dy2 dz2
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and

(2.8) UR =

lˆ

a

b
2ˆ

− b
2

hˆ

−h

u0R dx4 dy3 dz3,

where u0U and u0R are the strain energy densities in the upper crack arm and
the un-cracked beam portion, respectively.

Similarly to formulae (2.5)–(2.8), the complementary strain energy cumulated
in the beam is obtained as

(2.9) U∗ =

aˆ

0

b
2ˆ

− b
2

h
2ˆ

−h
2

u∗0L dx4 dy1 dz1 +

aˆ

0

b
2ˆ

− b
2

h
2ˆ

−h
2

u∗0U dx4 dy2 dz2

+

lˆ

a

b
2ˆ

− b
2

hˆ

−h

u∗0R dx4 dy3 dz3,

where u∗0L, u
∗
0U , and u

∗
0R are the complementary strain energy densities in the

lower and upper crack arms, and the uncracked beam portion, respectively.
The Ramberg-Osgood stress-strain relation that is used to describe the non-

linear mechanical behaviour of the material is written as

(2.10) ε =
σ

E
+
( σ
H

) 1
n
,

where ε is the lengthwise strain, σ is the normal stress, E is the modulus of
elasticity, H and n are material properties. The modulus of elasticity varies
continuously in the beam cross-section according to the following linear law [11]:

(2.11) E = q1y4 + q2z4 + q3,

where

− b
2
≤ y4 ≤

b

2
,(2.12)

−h ≤ z4 ≤ h.(2.13)
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In (2.11),

q1 =
1

b
(ES − EK) ,(2.14)

q2 =
1

h
(ET − ES) ,(2.15)

q3 =
1

2
(ET + EK) ,(2.16)

where EK , ES , and ET are, respectively, the values of the modulus of elasticity
in points K, S, and T in an arbitrary cross-section KST of the beam (Fig. 1).
Besides, it is assumed that EK , ES , and ET vary linearly along the beam length

EK = EK1 +
EK2 − EK1

l
x4,(2.17)

ES = ES1 +
ES2 − ES1

l
x4,(2.18)

ET = ET1 +
ET2 − ET1

l
x4,(2.19)

where

(2.20) 0 ≤ x4 ≤ l.

In (2.17), (2.18) and (2.19), EK1 , ES1 , and ET1 are, respectively, the values of
EK , ES , and ET in points K1, S1, and T1 at the free end of the beam, EK2 , ES2 ,
and ET2 are, respectively, the values of EK , ES , and ET in points K2, S2, and
T2 at the clamped end of the beam (Fig. 1). It can be summarised that formulae
(2.11)–(2.20) describe the continuous variation of the modulus of elasticity in
the inhomogeneous cantilever beam configuration (Fig. 1).

In principle, the strain energy density is equal to the area OPQ enclosed by
the stress-strain curve (Fig. 3). For the Ramberg-Osgood stress-strain relation,
the strain energy density in the lower crack arm is expressed as [12]

(2.21) u0L =
σ2

2EL
+

σ
1+n
n

(1 + n)H
1
n

,

where σ and EL are, respectively, the distributions of the normal stresses and the
modulus of elasticity in the lower crack arm cross-section. By using (2.11),
the distribution of the modulus of elasticity in the lower crack arm cross-section
is written as

(2.22) EL = q1y1 + q2z1 + q3L,
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where

q3L = q2
h

2
+ q3,(2.23)

− b
2
≤ y1 ≤

b

2
,(2.24)

−h
2
≤ z1 ≤

h

2
.(2.25)

Fig. 3. Non-linear stress-strain curve.

By substituting of (2.22) in (2.21), one arrives at

(2.26) u0L =
σ2

2 (q1y1 + q2z1 + q3L)
+

σ
1+n
n

(1 + n)H
1
n

.

Formula (2.26) is used also to obtain the strain energy density in the upper
crack arm. For this purpose, σ is replaced with the distribution of the normal
stresses σU in the upper crack arm. Also, q3L is replaced with q3U where q3U is
obtained by the following formula:

(2.27) q3U = −q2
h

2
+ q3.

The strain energy density in the uncracked beam portion is determined by
(2.26) by replacing of σ with the distribution of the normal stresses in uncracked
beam portion σR. In addition, q3L is replaced with q3.

The complementary strain energy density is equal to the area OQR that sup-
plements the area OPQ, to a rectangle (Fig. 3). Therefore, the complementary
strain energy density in the lower crack arm is written as

(2.28) u∗0L = σε− u0L.
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By substituting of (2.10) and (2.26) in (2.28), one derives

(2.29) u∗0L =
σ2

2 (q1y1 + q2z1 + q3L)
+

nσ
1+n
n

(1 + n)H
1
n

.

Formula (2.29) is also applied to determine the complementary strain energy
density in the upper crack arm. For this purpose, σ and q3L are replaced with the
σU and q3U , respectively. Similarly, the complementary strain energy density in
the un-cracked beam portion is derived by replacing of σ and q3L, respectively,
with σR and q3 in (2.29).

In order to perform the integration in (2.6), σ has to be expressed as a func-
tion of y1 and z1. However, it is obvious that σ cannot be determined explicitly
from the Ramberg-Osgood equation (2.10). Therefore, σ is expanded in the series
of Maclaurin by keeping the first six members

(2.30) σ(y1, z1) ≈ σ(0, 0) +
∂σ (0, 0)

∂y1
y1 +

∂σ (0, 0)

∂z1
z1 +

∂2σ (0, 0)

2!∂y2
1

y2
1

+
∂2σ (0, 0)

∂y1∂z1
y1z1 +

∂2σ (0, 0)

2!∂z2
1

z2
1 .

Formula (2.30) is rewritten as

(2.31) σ(y1, z1) ≈ β1 + β2y1 + β3z1 + β4y
2
1 + β5y1z1 + β6z

2
1 ,

where the coefficients, β1, β2, β3, β4, β5, and β6, are determined in the following
way. First, the distribution of the lengthwise strains in the lower crack arm cross-
section is analysed. The validity of the Bernoulli hypothesis for plane sections is
assumed since the span to height ratio of the beam under consideration is large.
Thus, ε written as

(2.32) ε = εC1 + κy1y1 + κz1z1,

where εC1 is the strain in the centre of the lower crack arm cross-section, and
κy1 and κz1 are the curvatures the of lower crack arm in the x1y1 and x1z1

planes, respectively. Concerning the applicability of the Bernoulli hypothesis, it
should also be noted that since the beam is loaded in pure bending, the only
non-zero strain is ε. Thus, according to the small strains compatibility equations,
ε is distributed linearly in the cross-section of the lower crack arm. It should be
mentioned that the Bernoulli hypothesis has already been used in longitudinal
fracture analyses of inhomogeneous beam configurations [13].
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Further, formulae (2.22), (2.31) and (2.32) are substituted in (2.10)

(2.33) εC1 + κy1y1 + κZ1z1 =
β1 + β2y1 + β3z1 + β4y

2
1 + β5y1z1 + β6z

2
1

q1y1 + q2z1 + q3L

+
( β1 + β2y1 + β3z1 + β4y

2
1 + β5y1z1 + β6z

2
1 )

1
n

H
1
n

.

By substituting of y1 = 0 and z1 = 0 in (2.33), one arrives at

(2.34) εC1 =
β1

q3L
+
β

1
n
1

H
1
n

.

Then, by substituting of y1 = 0 and z1 = 0 in the first derivative of (2.33) with
respect to y1, one obtains

(2.35) κy1q3L + εC1q1 = β2 +
1

H
1
n

(
q1β

1
n
1 + q3L

1

n
β

1
n
−1

1 β2

)
.

Similarly, by substituting of y1 = 0 and z1 = 0 in the first derivative of (2.33)
with respect to z1, one arrives at

(2.36) κz1q3L + εC1q2 = β3 +
1

H
1
n

(
q2β

1
n
1 + q3L

1

n
β

1
n
−1

1 β3

)
.

Furthermore, by substituting of y1 = 0 and z1 = 0 in the second derivative
of (2.33) with respect to y1, in the second mixed derivative of (2.33) and in the
second derivative of (2.33) with respect to z1, one obtains

2κy1q1 = 2β4 +
1

H
1
n

{
q1

1

n
β

1
n
−1

1 β2 + q1
1

n
β

1
n
−1

1 β2(2.37)

+

[
2

n
β4β

1
n
−1

1 + β2
1

n

(
1

n
− 1

)
β

1
n
−2

1 β2

]}
,

κy1q2 + κz1q1 = β5 +
1

H
1
n

{
q1

1

n
β

1
n
−1

1 β3 + q2
1

n
β

1
n
−1

1 β2(2.38)

+ q3L

[
β5

1

n
β

1
n
−1

1 + β2
1

n

(
1

n
− 1

)
β

1
n
−2

1 β3

]}
,

2κz1q2 = 2β6 +
1

H
1
n

[
q2

1

n
β

1
n
−1

1 β3 + q2
1

n
β

1
n
−1

1 β3(2.39)

+ q3L
1

n

(
1

n
− 1

)
β

1
n
−2

1 β2
3 + 2β

1
n
−1

1 β6

]
.
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There are nine unknowns, β1, β2, β3, β4, β5, β6, εC1 , κy1 , and κz1 , in
Eqs (2.34)–(3.39). Three other equations are derived by considering the equi-
librium of the elementary forces in the cross-section of the lower crack arm

N =

¨

A1

σ dA,(2.40)

My1 =

¨

A1

σz1 dA,(2.41)

Mz1 =

¨

A1

σy1 dA,(2.42)

where A1 is the area of the lower crack arm cross-section, N , My1 , and Mz1 are,
respectively, the axial force and the bending moments about the centroidal axes,
y1 and z1. It is obvious that (Fig. 2)

N = 0,(2.43)

My1 = ML,(2.44)

Mz1 = 0.(2.45)

By substituting of (2.31) in (2.40)–(2.42), one derives

N = β1bh+ β4
b3h

12
+ β6

bh3

12
,(2.46)

My1 = β3
bh3

12
,(2.47)

Mz1 = β2
b3h

12
.(2.48)

Equations (2.34)–(2.39) and (2.46)–(2.48) should be solved with respect to
β1, β2, β3, β4, β5, β6, εC1 , κy1 , and κz1 by using the MatLab computer program.
It should be noted that Eqs (2.34)–(2.39) and (2.46)–(2.48) can be applied to
determine β1, β2, β3, β4, β5, β6, εC1 , κy1 , and κz1 at any cross-section of the
lower crack arm, i.e., for any x4 in the interval [0; a] (the only difference between
the various cross-sections are the values of EK , ES , and ET which are obtained
by formulae (2.17)–(2.19)).

Equations (2.34)–(2.39) and (2.46)–(2.48) are applied also to obtain βU1, βU2,
βU3, βU4, βU5, βU6, εC2 , κy2 , and κz2 at the cross-section of the upper crack arm
(here, εC2 is the strain in the centre of the upper crack arm cross-section, κy2

and κz2 are, respectively, the curvatures of the upper crack arm in the x2y2 and
x2z2 planes). For this purpose, β1, β2, β3, β4, β5, β6, q3L, εC1 , κy1 , and κz1 are
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replaced, respectively, with βU1, βU2, βU3, βU4, βU5, βU6, q3U , εC2 , κy2 , and κz2
in Eqs (2.34)–(2.39) and (2.46)–(2.48). Additionally„ My1 is replaced with MU

(Fig. 1). The stress σU , in the upper crack arm cross-section, is determined by
replacing of β1, β2, β3, β4, β5, β6, y1, and z1, respectively, with βU1, βU2, βU3,
βU4, βU5, βU6, y2, and z2 in (2.31).

Analogically, the parameters, βR1, βR2, βR3, βR4, βR5, βR6, εC3 , κy3 , and κz3 ,
of the cross-section of the uncracked beam portion are obtained by replacing of
β1, β2, β3, β4, β5, β6, q3L, εC1 , κy1 , and κz1 , respectively, with βR1, βR2, βR3, βR4,
βR5, βR6, q3, εC3 , κy3 , and κz3 in Eqs (2.34)–(2.39) and (2.46)–(2.48). Also, h and
My1 are replaced, respectively, with 2h and MU −ML (Fig. 1). Formula (2.31)
is applied to calculate the stress σR in the uncracked beam portion. For this
purpose, β1, β2, β3, β4, β5, β6, y1, and z1 are replaced with βR1, βR2, βR3, βR4,
βR5, βR6, y2, and z2, respectively.

By substituting of (2.3)–(2.8) and (2.9) in (2.2), one arrives at

(2.49)

G =
ML

b

∂

∂ML


b
2ˆ

− b
2

h
2ˆ

−h
2

u∗0L dy1 dz1 +

b
2ˆ

− b
2

h
2ˆ

−h
2

u∗0U dy2 dz2 −

b
2ˆ

− b
2

hˆ

−h

u∗0R dy3 dz3



+
MU

b

∂

∂MU


b
2ˆ

− b
2

h
2ˆ

−h
2

u∗0L dy1 dz1 +

b
2ˆ

− b
2

h
2ˆ

−h
2

u∗0U dy2 dz2 −

b
2ˆ

− b
2

hˆ

−h

u∗0R dy3 dz3



− 1

b


b
2ˆ

− b
2

h
2ˆ

−h
2

u0L dy1 dz1 +

b
2ˆ

− b
2

h
2ˆ

−h
2

u0U dy2 dz2 −

b
2ˆ

− b
2

hˆ

−h

u0R dy3 dz3

,
where u0L, u0U , u0R, u∗0L, u

∗
0U , and u

∗
0R are determined by (2.26), (2.29), (2.31),

(2.34)–(2.39), and (2.46)–(2.48) at x4 = a. The integration in (2.49) should
be performed by the MatLab computer program. The derivatives ∂

∂ML
(...) and

∂
∂MU

(...) in (2.49) should be determined numerically by the MatLab computer
program.

In order to verify (2.49), the strain energy release rate is also derived by using
the following formula [8]:

(2.50) G =
dU∗

bda
,

where dU∗ is the change of the complementary strain energy, and da is an el-
ementary increase of the crack length. By substituting of (2.9) in (2.50), one
obtains
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(2.51) G =
1

b


b
2ˆ

− b
2

h
2ˆ

−h
2

u∗0L dy1 dz1 +

b
2ˆ

− b
2

h
2ˆ

−h
2

u∗0U dy2 dz2 −

b
2ˆ

− b
2

hˆ

−h

u∗0R dy3 dz3

,
where u∗0L, u

∗
0U , and u∗0R are determined by (2.29), (2.31), (2.34)–(2.39) and

(2.46)–(2.48) at x4 = a. The integration in (2.51) should be performed by the
MatLab computer program. The strain energy release rates calculated by (2.51)
are the exact matches of the strain energy release rates obtained by (2.50). This
fact is a verification of the crack analysis developed in the present paper. It
should be noted that the strain energy release rate is also analysed by keeping
more than six members in the series of Maclaurin (2.30). The results obtained
are very close to those derived by keeping the first six members (the difference
is less than 2%).

Due to the material inhomogeneity, the strain energy release rate is dis-
tributed non-uniformly along the crack front. It should be mentioned that for-
mulae (2.50) and (2.51) calculate the average value of the strain energy release
rate along the crack front. Therefore, in order to evaluate the distribution of
the strain energy release rate along the crack front the crack is also analysed
by applying the J-integral approach since the J-integral is equal to the strain
energy release rate [7].

The J-integral is solved along the contour Γ shown as a dashed line in Fig. 1.
Thus, the J-integral solution is written as
(2.52) J = JΓ1 + JΓ2 + JΓ3 ,

where JΓ1 , JΓ2 , and JΓ3 are the J-integral values, respectively, in segments, Γ1,
Γ2, and Γ3, of the integration contour. The J-integral in segment Γ1 is written as

(2.53) JΓ1 =

ˆ

Γ1

[
u0L cosα−

(
px
∂u

∂x
+ py

∂v

∂x

)]
dsΓ ,

where the angle between the outwards normal vector to the contour of integration
and the crack direction is marked by α, the components of the stress vector are
marked by px and py, the components of the displacement vector with respect to
the coordinate system xy are marked by u and v, and dsΓ is a differential element
along the contour of integration. The components of (2.53) are written as

px = −σ,(2.54)

py = 0,(2.55)

dsΓ = dz1,(2.56)

∂u

∂x
= ε,(2.57)

cosα = −1.(2.58)
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By substituting of (2.54)–(2.58) in (2.53), one derives

(2.59) JΓ1 = β1εC1h+ εC1β6
h3

12
+ κz1β3

h3

12
− β2

1

2q3L
h− β

1+n
n

1

(1 + n)H
1
n

h

+

(
β2εC1h+ κy1β1h+ κy1β6

h3

12
+ κz1β5

h3

12

)
y1

+ (β4εC1h+ κy1β2h) y2
1 + κy1β4hy

3
1,

where

(2.60) − b
2
≤ y1 ≤

b

12
.

The J-integral solution in segment Γ2 of the integration contour (Fig. 1) can
be found by using (2.59). For this purpose, β1, β2, β3, β4, β5, β6, q3L, εC1 , κy1 ,
and κz1 are replaced with βU1, βU2, βU3, βU4, βU5, βU6, q3U , εC2 , κy2 , and κz2 ,
respectively. Formula (2.59) is applied also to obtain the J-integral solution in
segment Γ3 of the integration contour. For this purpose, h, β1, β2, β3, β4, β5,
β6, q3L, εC1 , κy1 , and κz1are replaced, respectively, with 2h, βR1, βR2, βR3, βR4,
βR5, βR6, q3, εC3 , κy3 , and κz3 . Besides, the sign of (2.59) is set to “minus” since
the contour of integration is directed upwards in segment Γ3.

By substituting of JΓ1 , JΓ2 and JΓ3 in (2.52), one obtains the following solu-
tion of the J-integral:

(2.61) J = β1εC1h+ εC1β6
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Formula (2.61) expresses the distribution of the J-integral value along the
crack front.

The average value of the J-integral along the crack front is written as

(2.62) JAV =
1

b

b
2ˆ

− b
2

J dy1.

It should be noted that the average value of the J-integral along the crack
front obtained by substituting of (2.61) in (2.62) and performing the integration
by the MatLab computer program is an exact match of the strain energy release
rate. This fact is also a verification of the analysis developed in the present paper.

3. Parametric investigation

A parametric investigation is carried out in order to evaluate the effects of
three-axial material inhomogeneity and non-linear mechanical behaviour of the
material on the lengthwise crack in the cantilever beam (Fig. 1). For this purpose,
calculations of the strain energy release rate are performed by using (2.49). The
results obtained are presented in non-dimensional form by using the formula
GN = G/ (EK1b). The material inhomogeneities along the width and height of
the beam are characterised by ES1/EK1 and ET1/EK1 ratios, respectively. It
is assumed that b = 0.004 m, h = 0.004 m, l = 0.35 m, ML = 0.40 N ·m,
MU = 0.30 N ·m. Function (2.11) is written as E = −9000y4 + 33000z4 + 168 at
ES1/EK1 = 0.7, ET1/EK1 = 1.8, x4 = 0.0, and EK1 = 120 GPa.

The strain energy release rate in non-dimensional form is plotted against
ES1/EK1 ratio in Fig. 4 at a/l = 0.75,ET1/EK1 = 0.6,H/EK1 = 0.5,EK2/EK1 =

Fig. 4. The strain energy release rate in non-dimensional form presented as a function of
ES1/EK1 ratio (curve 1 – at non-linear mechanical behaviour of the material, curve 2 – at

linear-elastic behaviour of the material).
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0.5, ES2/ES1 = 0.5, ET2/ET1 = 0.5, and n = 0.7. It should be noted that EK1 is
kept constant. Therefore, ES1 is varied to generate various ES1/EK1 ratios. The
curves in Fig. 4 show that the strain energy release rate decreases with increasing
of ES1/EK1 ratio (this behaviour is due to the increase of the beam stiffness).
The strain energy release rate obtained assuming linear-elastic behaviour of the
inhomogeneous material is also plotted in Fig. 4 for comparison with the non-
linear solution. It should be noted that the linear-elastic solution for the strain
energy release rate is derived by substituting of H →∞ in (2.26), (2.29), (2.31),
(2.34)–(2.39) and (2.46)–(2.49) since at H → ∞ the Ramberg-Osgood stress-
strain relation (2.10) transforms into the Hooke’s law. One can observe in Fig. 4
that the non-linear mechanical behaviour of the material leads to an increase of
the strain energy release rate.

The effect of ET1/EK1 ratio on the fracture behaviour is illustrated in Fig. 5
where the strain energy release rate in non-dimensional form is plotted against
ET1/EK1 ratio at three H/EK1 ratios. In Fig. 5, it can be also observed that
the strain energy release rate decreases with increasing of ET1/EK1 and H/EK1

ratios.

Fig. 5. The strain energy release rate in non-dimensional form presented as a function of
ET1/EK1 ratio (curve 1 – at H/EK1 = 0.5, curve 2 – at H/EK1 = 2 and curve 3 – at

H/EK1 = 8).

The influence of EK2/EK1 ratio and the crack length on the crack behaviour is
elucidated too. For this purpose, the strain energy release rate in non-dimensional
form is plotted against a/l ratio at two EK2/EK1 ratios in Fig. 6. The curves
in Fig. 6 indicate that the strain energy release rate decreases with increasing
the crack length when EK2/EK1 = 1.5. This finding is attributed to the fact
that the modulus of elasticity in the beam cross-section in which the crack front
is located increases with increasing the crack length. One can also observe that
at EK2/EK1 = 0.5 the strain energy release rate increases with increasing the
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Fig. 6. The strain energy release rate in non-dimensional form presented as a function of a/l
ratio (curve 1 – at EK2/EK1 = 0.5 and curve 2 – at EK2/EK1 = 1.5).

crack length (Fig. 6). The curves in Fig. 6 also show that the strain energy
release rate at EK2/EK1 = 0.5 is higher than that at EK2/EK1 = 1.5 when
0.20 ≤ a/l ≤ 0.80.

The distribution of the J-integral value along the crack front is shown in Fig. 7
at two ES1/EK1 ratios and a/l = 0.75. The J-integral value is presented in non-
dimensional form by using the formula JN = J/ (EK1b). Calculations are carried
out by applying (2.61). The abscise axis y1/b in Fig. 7 is directed along the crack
front (y1/b is chosen such that its origin is located in the centre of the crack front).

Fig. 7. Distribution of the J-integral value in non-dimensional form along the crack front
(curve 1 – at ES1/EK1 = 0.5 and curve 2 – at ES1/EK1 = 2.0). The horizontal axis, y1/b, is

chosen such that y1/b = 0.0 is located in the centre of the crack front.
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Besides, y1/b = 0.5 is on the lateral surface S1T1S2T2 of the beam (Fig. 1). The
curves in Fig. 7 indicate that the J-integral value is distributed non-uniformly
along the crack front. In Fig. 7, it can also be observed that the J-integral value
increases with increasing of abscise, y1/b, at ES1/EK1 = 0.5. This finding is
attributed to the fact that at ES1/EK1 = 0.5 the modulus of elasticity decreases
with increasing of y1/b. At ES1/EK1 = 2.0 the J-integral value decreases with
increasing of y1/b (Fig. 7). It should be noted that the distribution of the strain
energy release rate along the crack front is the same as that of the J-integral
shown in Fig. 7 since the J-integral is equal to the strain energy release rate [7].
The crack growth will initiate in the point of the crack front where the strain
energy release rate is a maximum. Thus, the maximum strain energy release
rate Gmax has to be compared with the critical strain energy release rate, GC .
The crack growth will initiate when Gmax ≥ GC . It should be mentioned that
the critical strain energy release rate is a material property that is distributed
non-uniformly along the crack front since the material is inhomogeneous. The
distribution pattern of the critical strain energy release rate along the crack front
is the same as that of the J-integral shown in Fig. 7.

Non-symmetric loading conditions (only the lower crack arm is loaded by
a moment ML, while the upper crack arm is free of stresses) are also considered.
The strain energy release rate in non-dimensional form is plotted against ML at
two ET1/EK1 ratios in Fig. 8. The curves in Fig. 8 show that the strain energy
release rate increases quickly with increasing ofML. It can be observed also that
an increase of ET1/EK1 ratio leads to a decrease of the strain energy release rate
(Fig. 8).

Fig. 8. The strain energy release rate in non-dimensional form presented as a function of
ML when only the lower crack arm is loaded (curve 1 – at ET1/EK1 = 0.5 and curve 2 – at

ET1/EK1 = 2.0).
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The curves in Figs 4–7 and 8 indicate that the inhomogeneous non-linear
elastic beam under consideration can be optimised with respect to the strain
energy release rate (for instance, by varying ES1/EK1 , ET1/EK1 , and H/EK1 ra-
tios the strain energy release rate can be significantly decreased, which improves
the lengthwise crack performance of the beam).

The distribution of the normal stresses in non-dimensional form σ/EK1 , along
the height of the lower crack arm at y1 = 0 in the cross-section of abscissa,
x1 = a/3, is presented in Fig. 9 at ET1/EK1 = 1.5 (the coordinate system,
x1y1z1, is shown in Fig. 2). One can observe in Fig. 9 that the normal stresses are
distributed non-uniformly along the height of the lower crack arm cross-section
which is due to the non-linear mechanical behaviour of the material and to the
material inhomogeneity. It can be observed also in Fig. 9 that the normal stress
at the lower surface is higher than that of the upper surface of the crack arm
(this finding is attributed to the fact that the value of the modulus of elasticity
at the lower surface is higher than that at the upper surface of the crack arm).
Figure 10 shows the distribution of the normal stresses in non-dimensional form

Fig. 9. Distribution of the normal stresses in non-dimensional form along the height of the
lower crack arm at y1 = 0 in the cross-section of abscissa, x1 = a/3 (the coordinate system,

x1y1z1, is shown in Fig. 2).

Fig. 10. Distribution of the normal stresses in non-dimensional form along the height of the
lower crack arm at y1 = 0 in the cross-section of abscissa, x1 = 2a/3.
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along the height of the lower crack arm at y1 = 0 in the cross-section of abscissa,
x1 = 2a/3.

4. Conclusion

In the present paper, a technique for analyzing lengthwise crack in non-linear
elastic beams exhibiting three-axial material inhomogeneity, i.e., inhomogeneity
in width, height and length directions of the beam, is developed. It is assumed
that the modulus of elasticity of the inhomogeneous material varies linearly along
the width, height and length of the beam. The non-linear mechanical behaviour
of the inhomogeneous material is modelled by using the Ramberg-Osgood stress-
strain relation. A solution to the strain energy release rate is derived by analysing
the energy balance. In order to verify the solution, the strain energy release
rate is also obtained by using the complementary strain energy. A parametric
study of lengthwise crack is performed to elucidate the effects of material in-
homogeneity, material non-linearity and crack length on the crack behaviour.
The material inhomogeneity along the width, height and length of the beam
is characterised by ES1/EK1 , ET1/EK1 , and EK2/EK1 ratios, respectively. The
analysis revealed that the strain energy release rate decreases with increasing of
ES1/EK1 , ET1/EK1 , and EK2/EK1 ratios. It is found that the non-linear me-
chanical behaviour of the inhomogeneous material increases the strain energy
release rate. Concerning the effect of crack length, it is found that the strain en-
ergy release rate increases with increasing the crack length when EK2/EK1 < 1.
If EK2/EK1 > 1, the increase of the crack length leads to decrease of the strain
energy release rate.

In addition, the J-integral approach is applied in the present paper. The
distribution of the J-integral value along the crack front is analysed. It is found
that the J-integral value (and the strain energy release rate) is distributed non-
uniformly along the crack front which is due to the material inhomogeneity (this
fact shows that the crack growth will initiate in the point of the crack front
where the strain energy release rate is maximal). The technique developed in
the present paper can be applied in crack- mechanics based structural design
of beam structures made of non-linear elastic materials whose properties vary
continuously along the width, height and length of the beam.
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