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A comprehensive theoretical study of the free vibration of rotationally restrained rect-
angular uniform isotropic Mindlin’s plate is presented. The plate mode shape is assumed to
be a weighted combination of the product of the Timoshenko beam functions in the either
direction, which are previously generated for rotationally constrained boundary conditions.
The effect of the uniformly distributed rotational spring constant (modelling the edge) par-
ticipates in the potential energy of the plate. The Rayleigh-Ritz method has been used to
generate the natural frequencies and plate mode shapes for various intermediate boundary
conditions, asymptoting to those of the plates with all possible (six) classical boundary con-
ditions. Plates with various thickness ratios have been studied to converge the results to the
corresponding Kirchhoff’s frequencies. The eigenvectors from the eigenvalue problem have been
scrutinized to establish the beam-wise modal participation from either direction into the final
plate mode shape. The square Mindlin’s plate mode shapes have been generated to establish
the various types of frequencies; which have been innovatively named and categorized as the
(i) single frequencies, (ii) repeated frequencies (identical twins) and (iii) non-repeated frequen-
cies(fraternal twins). Plates with different rectangular aspect ratios have been also analysed
to show the deviation in the frequencies and mode shapes from the square plate. Also, their
asymptotic behaviour to the corresponding Timoshenko beam at extreme aspect ratios has
been established.

Key words: Mindlin’s plate; eigenvectors; plate mode shapes; Timoshenko beam function;
elastically restrained edges; asymptotic study.

Notations

a, b, h – length, breadth and thickness of the plate [m],
A – cross-sectional area [m2],
AS – aspect ratio of plate AS = b/a [–],
D – plate rigidity [N ·m],

E, G – Young modulus, Shear modulus [N/m2],
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I – area moment of inertia of cross section [m4],
k2 – shear correction factor for shear strain,
kr – rotational restraint at the edges [N ·m/rad],

KRR, KRL – right and left non-dimensional rotational restraint on the beam [–],
KR, R – non-dimensional rotational restraint on the plate edge [–],
K, M – stiffness matrix and mass matrix,

L – length of the beam [m],
x, y, t – independent variable in length, breadth and time [m], [m], [s],
U , T – strain energy and kinetic energy [J],

w(x, y; t) – lateral displacement [m],
W (x, y) – lateral out of plane displacement of the plate [m],

Wxi, Wyj – beam mode shape in x and y-direction [m],
ρ, ν – density of the material, Poisson ratio [kg/m3],
ξ, η – non-dimensional length, breadth of the beam/plate [–],
ω, Ω – non-dimensional and dimensional natural frequencies [–], [rad/s],

Ψx(ξ, η) – pure bending slope of plate in x-direction [–],
Ψxi, Ψxj – pure bending slope mode shape of beam in x-direction [–],
Ψy(ξ, η) – pure bending slope of plate in y-direction [–],
Ψyi, Ψyj – pure bending slope mode shape of beam in y-direction [–].

1. Introduction

Plates find a wide range of applications in mechanical, civil, aerospace, naval,
and nuclear engineering. They have various boundary conditions, slenderness
ratios, aspect ratios, and natural frequencies. Their static and dynamic analyses
are both required for sound structural designs. The Kirchhoff’s (classical) plate
theory, which assumes ‘pure bending’, begins to fail for (i) higher thickness ratios
(h/b > 1/20), when the shear deformation and rotary inertia become important,
and for (ii) higher order frequencies of thin plates itself, when the wave number
is high, causing appreciable shear deformation. This necessitates the application
of the Mindlin’s plate theory [17, 18], which includes the shear deformation and
the rotary inertia of the plate. The former augments the potential energy of
the plate, while the latter augments the kinetic energy. Their prominence is
a function of the slenderness of the plate, and the overtone of the frequency.
The governing differential equations comprise of the three coupled equations for
the flexural displacement, and the two pure bending slopes in each direction.

Classical boundary conditions are nearly impossible to achieve in practical
engineering applications, e.g. the quality of the weld on the edge of a plate
maybe weak enough not to match with the classical ‘clamped’ condition. Even
hinged edges need not be exactly ‘classical’ since some restraint is often provided
for safety and operational ease. This necessitates the analysis of such plates
using the special boundary conditions, which are modelled as rotational springs,
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participating in the total potential energy of the plate. The natural frequency of
the plate is highly sensitive to the (i) boundary conditions, (ii) slenderness ratio,
and (iii) aspect ratio of the plate. Modelling of the boundary conditions of the
plate through those of the admissible beam functions is still open to scrutiny,
in at least vibration analysis. Thus, the objective of this work is as follows:
• The indirect modelling of the Mindlin’s plate boundary condition through

the Timoshenko beam boundary conditions, augmented by dummy ro-
tational spring constants in the potential energy of the edge fixity: this
eliminates the requirement of the dummy inclusion of translational con-
stants to achieve the non-classical edge conditions of the plate, which is
usually included in published work. This reduces the computational time
of free vibration greatly.
• The study of plate mode shapes through eigenvectors, which is not yet

found in the existing literature, which is limited to the frequency analysis
only.
• The study of the asymptotic behaviour of the plate frequencies as a func-

tion of the aspect ratio, which is still unreported in published work.
Magrab [16] studied orthotropic rectangular Mindlin’s plates with the edges

modelled as torsional springs. The results were limited to the square plates
only. Dawe and Roufaeil [5] investigated the Mindlin’s plates for free vibra-
tion analysis by using Timoshenko beam functions as the admissible functions
for the plate in the energy-based method, but for a limited number of clas-
sical boundary conditions only (6 out of 21). Warburton and Edney [22]
investigated the free vibration of thin rectangular Kirchhoff’s plates by using
the Rayleigh-Ritz method, with the edges constrained both against translation
and rotation. Similarly, Laura [11, 10] and Laura and Grossi [10] worked
with rectangular plates with edges elastically restrained against rotation, apply-
ing the Rayleigh-Ritz method. Gorman [7, 8] and Bapat [1] studied the free
vibration analysis of rectangular and square plates, with all edges elastically
supported, by using the superposition and Levy’s method respectively. Results
by Gorman [7] are limited to the square plates only. Bapat’s work [1] was
limited to Kirchhoff’s plate. Chung et al. [2] studied the square Mindlin’s plate
analysis, with edges elastically restrained against rotation, by using ‘static’ Tim-
oshenko beam functions as the admissible functions, which were generated by
a 3rd degree polynomial. ‘Static’ stands for the ignoring of both translational
inertia and rotary inertia of the beam. Saha et al. [19] used the dynamic Tim-
oshenko beam mode shapes as trial functions for the rectangular Mindlin plates
with edges elastically restrained against both translation and rotation. Xiang
et al. [23] studied Mindlin’s plates with both translational and rotational edge
constraints, by using complete 2-dimensional polynomial. Here, the trial func-
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tions were directly for the plate, using a 14-degree polynomial to achieve high
accuracy in satisfying the boundary conditions. Zhou [24] studied moderately
thick plates (h/b = 0.2) with both translational and rotational edge constraints,
once again using the ‘static’ Timoshenko beam function as a trial function for
rectangular Mindlin’s plates. De Rosa and Lippiello [6] studied the free vi-
bration of tapered Euler-Bernoulli beam with rotationally and axially elastically
constraints. The cell discretization method (CDM) is used for dynamic analysis.

As per the knowledge of the authors, very few attempts have been made to
investigate Mindlin’s plates, with edges elastically restrained against rotation,
using dynamic Timoshenko beam mode shapes; for a wide range of (i) non-
dimensional rotational spring constants (1–105) and (ii) aspect ratios (0.1–10),
over all possible permutations and combinations of edge constraints, leading
to all possible six classical plates (SSSS, SSSC, SSCC, SCSC, SCCC, CCCC).
For the first time, all six combinations of clamped and hinged sides have been
analysed to generate convergent frequencies using only torsional springs (no
translational springs). This has been made possible by using the correct dummy
variables for the end fixities in the potential energy of the plate, bypassing the
accurate formulation of the Mindlin’s plate boundary conditions. Dynamic Tim-
oshenko beam functions (from beam vibration analysis) have been employed as
the trial/elementary/admissible functions into the Mindlin’s plate, by using the
energy-based Rayleigh-Ritz method (RRM). This work theoretically analyses
the Mindlin’s plates over a wide range of rotational edge constraints on one or
more sides, for rectangular plates with different aspect ratios.

Here, as an innovative attempt, a further study of the Mindlin’s plate mode
shapes with respect to the individual eigenvectors, highlighting the modal par-
ticipation from the two directions, has been done. A vast study of uniform, ho-
mogenous, isotropic, rectangular plates; with edges elastically restrained against
rotation; for different slenderness ratios and aspect ratios, has been conducted.
For the first time, the asymptotic behaviour of the plates with respect to the as-
pect ratio, over various boundary conditions, and two different thickness ratios
have been clearly established. The structure of the paper is as follows:
• The problem statement has been defined with respect to the parametric

space.
• Timoshenko beam vibration analysis has been discussed, which generates

the admissible functions.
• Mindlin’s plate analysis, by the energy-based RRM, has been detailed.
• Results for the square plate have been tabulated and discussed over the

parametric space, including convergence and comparative studies.
• Square plate mode shapes for the six possible boundary conditions, along

with their eigenvectors, have been scrutinized.
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• Results for the rectangular plate have been tabulated and discussed over
the parametric space, for two different aspect ratios, including convergence
and comparative studies.
• The asymptotic behaviour of the rectangular plates has been done for

various boundary conditions.

2. Problem formulation and parametric space

A homogenous, isotropic and uniform rectangular Mindlin’s plate has been
studied for free vibration natural frequencies and corresponding mode shape.
The free vibration is analysed by the Mindlin’s plate theory which includes
shear deformation and rotary inertia. The length of the plate is L [m], width
B [m], thickness h [m], density of the material ρ [kg/m3], modulus of elasticity
E [N/m2], shear modulus G [N/m2], Poisson ratio ν. The edge condition is
considered to be special, modelled as a uniformly distributed torsional spring
over the edge, with a spring constant of KR [N ·m/rad]. The study requires the
analysis of the Timoshenko beam with rotationally constrained edges (Fig. 1),
whose closed-form dynamic mode shapes are input into the RRM to analyse
the Mindlin’s plate with uniformly distributed rotationally constrained edges
(Fig. 2). This work encompasses the following parameters:
• Boundary conditions: All possible permutations and combinations of sim-

ply supported and clamped edges have been used here, by adjusting the
torsional spring constant of the edge(s), leading to the six classical plates;
namely, SSSS, CCCC, CCSS, SCSS, CCCS, SCSC.
• Edge constraint: The influence of the rotational constraint of the edges on

the plate natural frequency is studied over a wide range; starting from the
SSSS plate, and approaching to the five plates above.
• Slenderness ratio: Increasing the thickness-to-length ratio increases the

prominence of shear deformation, especially at the higher modes. In this

Fig. 1. Timoshenko beam with rotationally restrained edges.
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Fig. 2. Mindlin’s plate with rotational edge constraints.

work, three different slenderness ratios have been studied: h/b = 0.001 (for
convergence with Kirchhoff’s plate), h/b = 0.01 and h/b = 0.1.
• Aspect ratio: All the above plates have been studied for four different

aspect ratios, i.e. a/b = 1 (for convergence to Kirchhoff’s plate), a/b =
0.4, 0.6, 1.0, 1.5. The reciprocal aspect ratios produce the same natural
frequencies and mode shapes, but only for the CCCC, SSSS, and CCSS
plates.

3. Analysis methodology

The free vibration analysis of the Mindlin’s plate is done by the energy-based
RRM. This requires the generation of the orthogonal Timoshenko beam mode
shapes, which are used as trial functions for the Mindlin’s Plate.

3.1. Timoshenko beam vibration: trail function generation

The dynamic Timoshenko beam mode shapes derived from its free vibration
analysis, have been used as the trial functions (admissible functions) in the en-
ergy based plate vibration analysis. The coupled system of governing differential
equations, for the free vibration of Timoshenko beam [20], is given as:

(3.1)

EI
∂2ϕ(x, t)

∂x2
+ k2AG

(
∂w(x, t)

∂x
− ϕ(x, t)

)
− Iρ∂

2ϕ(x, t)

∂t2
= 0,

ρA
∂2w(x, t)

∂t2
− k2AG

(
∂2w(x, t)

∂x2
− ∂ϕ(x, t)

∂x

)
= 0,

where w(x, t) is a lateral displacement, ϕ(x, t) is a pure bending slope, A is
the cross-sectional area, I is the second moment of area of the cross-section
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about the neutral axis, and k2 is the shear correction factor uniformly varying
along the cross-section. The x-direction is along the length of the beam. Eli-
minating the pure bending slope ϕ(x, t) from Eq. (3.1), the unified equation
becomes [9, 21]

(3.2) EI
∂4w

∂x4
+ ρA

∂2w

∂t2
− ρI

(
1 +

E

k2G

)
∂4w

∂x2∂t2
+
ρ2I

k2G

∂4w

∂t4
= 0.

Similarly, eliminating the total displacement w(x, t) from Eq. (3.1) we arrive at

(3.3) EI
∂4ϕ

∂x4
+ ρA

∂2ϕ

∂t2
− ρI

(
1 +

E

k2G

)
∂4ϕ

∂x2∂t2
+
ρ2I

k2G

∂4ϕ

∂t4
= 0.

Assuming the vibration to be harmonic in time, the dependent variables in
Eq. (3.1) are expressed as: w(x, t) = W (ξ) eiΩt, ϕ(x, t) = ψ (x) eiΩt, ξ = x

L ,
where W (ξ) is the Timoshenko beam mode shape and ψ (ξ) is its pure-bending
slope mode shape. The difference between w′ (x) and ψ (x) is the shear slope
(shear strain). The axis-system is located at one corner of the plate. The x-
direction is along the length of the plate, and y-direction along the width. The
spatial component becomes, from Eq. (3.2)

(3.4)
∂4W (ξ)

∂ξ4
+Ω2

(
ρL2

E
+
ρL2

k2G

)
∂2W (ξ)

∂ξ2
+
ρ2L4Ω4

Ek2G
W (ξ)− ρAL4Ω2

EI
= 0,

where the symbols combine the geometric and material properties as:

Ω2 = b2
EI

ρAL4
, q2 =

I

AL2
, q1 =

EI

k2AGL2
,

where b2 is the non-dimensional frequency or the frequency parameter. Thus,

(3.5) W IV + b2 (q1 + q2)W
′′ − b2

(
1− b2q1q2

)
W = 0.

Similarly, Eq. (3.3) leads to

(3.6) ψIV + b2 (q1 + q2)ψ
′′ − b2

(
1− b2q1q2

)
ψ = 0.

Solving the bi-quadratic in Eq. (3.5), the solution can be expressed as:

λ2 =
−b2 (q1 + q2)±

√
b4 (q1 + q2)

2 + 4b2 (1− b2q1q2)
2

,

λ

b
=

− (q1 + q2)±
√

(q1 − q2)2 + 4
b2

2


1/2

.
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Specifically,

α =
λ

b
= ±

− (q1 + q2) +
√

(q1 − q2)2 + 4
b2

2


1/2

and

β =
λ

b
= ±

− (q1 + q2)−
√

(q1 − q2)2 + 4
b2

2


1/2

are the hyperbolic/monotonous part and the imaginary/oscillatory part, respec-
tively. Thus, the general solution to Eq. (3.5) and Eq. (3.6) are, respectively,
expressed as:
• Beam mode shape:

(3.7) W (ξ) = C1 coshαbξ + C2 sinhαbξ + C3 cosβbξ + C4 sinβbξ;

• Pure slope mode shape:

(3.8) ψ (ξ) = C1 coshαbξ + C2 sinhαbξ + C3 cosβbξ + C4 sinβbξ.

For − (q1 + q2) >
{

(q1 − q2)2 + 4
b2

}1/2
; i.e. 1

b2
< q1q2, the parameter α will

be hyperbolic in nature. Substituting for q1, q2, b2 in Eq. (3.1)1 gives:

(3.9) q1ψ
′′ −

(
1− q1q2b2

)
ψ +

W ′

L
= 0.

Similarly, substituting for, q1, q2, b2 in Eq. (3.1)2 gives

(3.10) W ′′ + b2q1W − ψ′L = 0.

Substituting for W , ψ and their first and second derivatives in Eq. (3.9) and
(3.10), we arrive at four relationships among the coefficients of W , ψ as follows:

(3.11)

C1 =
b

L

(
α2 + q1

)
α

C1, C2 =
b

L

(
α2 + q1

)
α

C2,

C3 = − b
L

[
β2 − q1

]
β

C3, C4 =
b

L

[
β2 − q1

]
β

C4.

The coefficients of W (ξ) and ψ (ξ) depend on the boundary conditions of the
beam. Here, the edges of the beam are elastically restrained against rotation,
and the displacement is zero at the ends
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K1 =
b

L

(
α2 + q1

)
α

, K2 =
b

L

(
β2 − q1

)
β

,

λ =
α

β
, γ =

(
β2 − q1

)
(α2 + q1)

,
K2

K1
= γλ.

The total deflection is zero at the ends: this is a classical geometric boundary
condition. The bending moment at the ends balances the torque stored in the
torsional spring. The special boundary condition involves only the pure bending
slope of the Timoshenko beam. The four boundary conditions can be mathe-
matically expressed as:

(3.12)

W (0) = 0, ψ(0) =
1

KRL
ψ′(0),

W (1) = 0, ψ(1) = − 1

KRR
ψ′(1),

where KRR and KRL are the right and left side spring constants divided by EI.
Substituting Eq. (3.12) in Eq. (3.7) and (3.8);

(3.13)

0 = C1 + C3,

K1C1αb−K1KRLC2 −K2βbC3 −KRLK2C4 = 0,

C1 coshαb+ C2 sinhαb+ C3 cosβb+ C4 sin bβ = 0,

[KRR sinhαb+ αb coshαb]C1 + [KRR coshαb+ αb sinhαb]C2

+ [−KRRγλ sin bβ − λγβb cos bβ]C3

+ [KRRγλ cos bβ − γλβb sin bβ]C4 = 0.

Writing Eq. (3.13) in the matrix form:∣∣∣∣∣∣∣∣∣∣∣

d11 d12 d13 d14

d21 d22 d23 d24

d31 d32 d33 d34

d41 d42 d43 d44

∣∣∣∣∣∣∣∣∣∣∣



C1

C2

C3

C4


=



0

0

0

0


,

where d11 = 1, d21 = αb, d12 = 0, d22 = −KRL, d13 = 1, d23 = −γλβb,
d14 = 0, d24 = −KRLγλ, d31 = coshαb, d41 = KRR sinhαb + αb coshαb, d32 =
sinhαb ,d42 = KRR coshαb + αb sinhαb, d33 = cosβb, d43 = −KRRγλ sin bβ −
λγβb cos bβ, d34 = sin bβ, d44 = KRRγλ cos bβ − γλβb sin bβ.
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For a non-trivial solution of the system of Eqs. (3.13),

(3.14)

∣∣∣∣∣∣∣∣∣
d11 d12 d13 d14
d21 d22 d23 d24
d31 d32 d33 d34
d41 d42 d43 d44

∣∣∣∣∣∣∣∣∣ = 0

gives the frequency equation. From here, the parameter b is obtained, which
leads to the natural frequencies of the Timoshenko beam. Substituting for b in
Eqs. (3.7) and (3.8), the Timoshenko beam mode shape and its pure-bending-
slope mode shape are both generated. The mode shapes depend on the boundary
conditions, which are governed by the non-dimensional torsional spring constant
KR. In this work, a wide range of KR has been used to study the free vibration
of the Mindlin’s plate. The two extreme cases of the end fixity are as follows:
• for KR ≥ 107, the edge behaves like the classical clamped (built-in) edge,
• for KR ≤ 10−7, the edge behaves like the classical hinged (simply-suppor-

ted) edge.

3.2. Mindlin’s plate vibration

Once the Timoshenko beam mode shapes are ready, they can be used as ad-
missible/trial functions in the plate mode shape W (ξ, η), and the pure bending
slope mode shape Ψx (ξ, η) and Ψy (ξ, η). The independent variable are x [m]
along the length, y [m] along the breadth and t in time [s]. The unknown are,
transverse out-of-plane flexural displacement w (x, y; t), the pure bending slope
along the x-direction Φx (x, y; t), the pure bending slope along the y-direction
Φy (x, y; t). The three dependent variables/unknowns are expressed as:

w (x, y; t) = W (ξ, η) eiΩt, Φx (x, y; t) = Ψx (ξ, η) eiΩt/a,

Φy (x, y; t) = Ψy (ξ, η) eiΩt/b,

ξ =
x

a
, η =

y

b
, q =

D

k2Gha2
, As =

a

b
, t =

h

b
.

The curvature-coupled boundary conditions of the plate, after approximation
(Laura, Grossi [10]) are:
• the total displacement is zero at the four edges

W (ξ, 0) = 0, W (ξ, 1) = 0, W (0, η) = 0, W (1, η) = 0,

• the bending moment at the edges is balanced by the torque stored in the
torsional spring

KR1Ψy (x) = DΨ ′y (x) , KR2Ψx (y) = DΨ ′x (y) ,

KR3Ψy (x) = DΨ ′y (x) , KR4Ψx (y) = DΨ ′x (y) .
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The maximum strain potential energy stored in a plate [17] is:

(3.15) Umax (plate) =
1

2

Db

a3

1ˆ

0

1ˆ

0

{(
∂Ψx
∂ξ

)2

+A4
s

(
∂Ψy
∂η

)2

+ 2A2
s

∂Ψx
∂ξ

∂Ψy
∂η

− 2 (1− ν)A2
s

[
∂Ψx
∂ξ

∂Ψy
∂η
− 1

4

(
∂Ψx
∂η

)2

− 1

4

(
∂Ψy
∂ξ

)2
]
− 1

2

∂Ψx
∂η

∂Ψy
∂ξ

+
1

q

[
Ψ2
x +

(
∂W

∂ξ

)2

+ 2Ψx
∂W

∂ξ
+A2

s

(
Ψ2
y +

(
∂W

∂η

)2

+ 2Ψy

(
∂W

∂η

))]}
dξ dη.

The maximum strain energy stored in the rotational springs on the four
edges is:

(3.16) Umax (rotational spring) =
1

2
KR1

1ˆ

0

[
Ψ2
x

]
ξ=0

dη +
1

2
KR2

1ˆ

0

[
Ψ2
x

]
ξ=1

dη

+
1

2
KR3A

4
s

1ˆ

0

[
Ψ2
y

]
η=0

dξ +
1

2
KR4A

4
s

1ˆ

0

[
Ψ2
y

]
η=1

dξ,

where KR1 = kr1a
D , KR2 = kr2a

D , KR3 = kr3b
D , KR4 = kr4b

D (kr1, kr2 are the
dimensional spring constants).

The above four variables in Eq. (3.16) are ‘dummy variables’, which need to
be included in order to match the physical boundary conditions of the plate. For
a fully clamped side, KR may be any number, and the plate analysis converges
to a clamped plate irrespective of the dummy variable. However, ‘loosening’ the
torsional spring to achieve the hinged condition requires the KR to be fixed
at a very small number. This is over and above the fact that the admissible
function, i.e. the Timoshenko beam mode shape, already has the effect of the
torsional spring in-built into it, through the closed-form solution to Eq. (3.1).
Equations (3.7) and (3.8) contain the mode shapes, whose curvatures directly
influence the potential energy. Though this may appear redundant since the
beam mode shape considers the torsional spring constant; the plate analysis
with edge conditions modelled as a torsional springs requires a judicious input
of the dummy variables to mathematically achieve the physical fixities of the
plate. The choice of the admissible function into the Rayleigh-Ritz method influ-
ences the prominence of the dummy variables, as the torsional spring constant
goes on reducing from the clamped edge condition to the hinged condition. Pub-
lished work shows the popularity of using ‘Static Timoshenko beam functions’ or
polynomials satisfying a static deflection of the beam. The weaker the trial func-
tion, the less accurate is the curvature and the potential energy, and therefore,
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the more elusive is the choice of the dummy variables. The use of the superior
dynamic Timoshenko trial functions, already satisfying the intermediate bound-
ary conditions, renders Eq. (3.16) of the Rayleigh-Ritz method less influential
on the total potential energy of the plate. Equation (3.15) itself is able to able
to itself capture the total potential energy of the plate. This methodology thus
has been able to generate all the six classical plates combining the clamped and
hinged edges, i.e. CCCC, SSSS, CSCS, CSSS, SCSS, and SSCC. The maximum
kinetic energy of the plate is:

(3.17) Tmax (plate) =
1

2
ρhΩ2ab

1ˆ

0

1ˆ

0

[
W 2 +

1

12
t2
(
Ψ2
x

A2
s

+ Ψ2
y

)]
dξ dη.

The three unknowns, expressed as a weighted superposition of the Timo-
shenko beam mode shapes, are:

W (ξ, η) =

r∑
i

r∑
j

cijWxi (ξ)Wyj(η), Ψx (ξ, η) =

r∑
i

r∑
j

dijψxi (ξ)Wyj(η),

Ψy (ξ, η) =

r∑
i

r∑
j

eijWxi (ξ)ψyj(η),

where cij , dij , eij are the unknown weights in the Rayleigh-Ritz assumption. The
minimization of the difference between the maximum strain potential energy and
the kinetic energy of the plate with respect to the unknown coefficients leads an
eigenvalue problem, the non-trivial solution of which gives natural frequencies
of the plate. Thus, minimizing the energy w.r.t. the unknown coefficients as
follows:(
∂

∂cij

)(
Umax (plate) + Umax(rotational spring) − Tmax (plate)

)
= 0(

∂

∂dij

)(
Umax (plate) + Umax(rotational spring) − Tmax (plate)

)
= 0(

∂

∂eij

)(
Umax (plate) + Umax(rotational spring) − Tmax (plate)

)
= 0

i, j = 1, 2, 3, ..., r

leads to

(3.18)
(
[Kplate +Krotational spring]− ω2 [Mplate]

)
c
d
e

 = 0,
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where the non-dimensional frequency ω2 = ρhΩ2b4

D ; with the dimensional fre-
quency Ω2;

Kplate =

 Kcc Kcd Kce

Kcd Kdd Kde

Kce Kde Kee


3r×3r

, Krotational spring =

 0 0 0
0 Kdd 0
0 0 Kee


3r×3r

,

Mplate =

 Mcc Mcd Mce

Mcd Mdd Mde

Mce Mde Mee


3r×3r

,

where r is the number of modes in each direction of the Timoshenko beam
function.

The components of the stiffness matrix are:

Kcc =

r∑
i

r∑
j

1

q

 1ˆ

0

1ˆ

0

∂Wxi

∂ξ

∂Wxj

∂ξ
WyiWyj dξ dη

+

A2
s

1ˆ

0

1ˆ

0

∂Wyi

∂η

∂Wyj

∂η
WxiWxj dξ dη

,
Kcd =

r∑
i

r∑
j

1

q

 1ˆ

0

1ˆ

0

(
∂Wxi

∂ξ
ψxjWyiWyj

)
dξ dη

,
Kce =

r∑
i

r∑
j

1

q

A2
s

1ˆ

0

1ˆ

0

(
ψyiWxjWxi

∂Wyj

∂η

)
dξ dη

,
Kdd =

r∑
i

r∑
j

 1ˆ

0

1ˆ

0

(
∂ψxi
∂ξ

∂ψxj
∂ξ

WyiWyj

)
dξ dη

+
(1− ν)

2
A2
s

1ˆ

0

1ˆ

0

(
ψxiψxj

∂Wyi

∂η

∂Wyj

∂η

)
dξ dη +

1

q

1ˆ

0

1ˆ

0

(ψxiψxjWyiWyj) dξ dη

+KR1

1ˆ

0

ψxi(0)ψxj(0) dη +KR2

1ˆ

0

ψxi(1)ψxj(1) dη

,
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Kde =
r∑
i

r∑
j

A2
s

 1ˆ

0

1ˆ

0

(
∂ψxi
∂ξ

Wxj
∂ψyi
∂η

Wyj

)
dξ dη

+
(1− ν)

2

1ˆ

0

1ˆ

0

(
∂ψxi
∂ξ

Wxj
∂ψyi
∂η

Wyj

)
dξ dη

,
Kee =

r∑
i

r∑
j

A4
s

1ˆ

0

1ˆ

0

(
WxiWxj

∂ψyi
∂η

∂ψyj
∂η

)
dξ dη

+
(1− ν)

2
A2
s

1ˆ

0

1ˆ

0

(
∂Wxi

∂ξ

∂Wxj

∂ξ
ψyiψyj

)
dξ dη

+
1

q
As2

1ˆ

0

1ˆ

0

(WxiWxjψyiψyj) dξ dη

+KR3A
4
s

1ˆ

0

(ψyi(0)ψyj(0)) dξ +KR4A
4
s

1ˆ

0

(ψyi(1)ψyj(1)) dξ

.
The components of the mass matrix are:

Mcc =
r∑
i

r∑
j

 1ˆ

0

1ˆ

0

(WxiWxjWyiWyj) dξ dη

,
Mdd =

r∑
i

r∑
j

 t2

12A2
s

1ˆ

0

1ˆ

0

(ψxiψxjWyiWyj) dξ dη

,
Mee =

r∑
i

r∑
j

 t2
12

1ˆ

0

1ˆ

0

(WxiWxjψyiψyj) dξ dη

,
Mcd = Mce = Mde = 0.

Equation (3.18) is an eigenvalue problem, which is solved to generate the
natural frequencies (eigenvalues) and the plate mode shapes, which can be ar-
rived at from the eigenvectors, which are the coefficients Cij considering the
number of modes as r, the eigen value problem generates r2 natural frequencies,
and their corresponding mode shapes. The eigenvectors are r2 in number, and
each having r2 elements.
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4. Results

This section presents the results from the Mindlin’s plate analysis, com-
pared with published work. It has been divided into the first sub-section on
square plates, whose frequencies have been compared with established results.
The square plate mode shapes and the eigenvectors have been analysed, scru-
tinized, and classified. The second sub-section deals with rectangular Mindlin’s
plates, which are a fresh addition to the existing literature. The plates have
been analysed by the energy-based RRM, generating the natural frequencies for
various boundary conditions, two different thickness ratios, four different aspect
ratios, and over a wide range of rotational edge constraints.

4.1. Timoshenko beam with rotational restraint: free vibration

Figure 3a shows the mode shapes of the Timoshenko beam with rotationally
constrained edges, for a rotational spring constant of KR = 10−6, 10−4, 10−2,
100, 101, 102, 104, 106. Increasing the spring constant decreases the end slopes
due to the reactional end moments being generated. It is noticed at for KR = 10,
the transition from the simply-supported beam to the clamped-clamped beam
occurs. This is also reflected in Fig. 3b, which shows the pure-bending slope
mode shapes of the Timoshenko beam. These mode shapes act as trial functions
in the Mindlin’s plate analysis, along with their derivatives. The mode shapes
are normalized to 1, before being used as trial functions.

a) b)

Fig. 3. Timoshenko mode shapes: a) deflection, b) pure bending slope
for KR = 10−6, 10−4, 10−2, 100, 101, 102, 104, 106.
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4.2. Square plate vibration

In this section, the free-vibration results for the uniform isotropic square
Mindlin’s plate are presented. Five different permutations/combinations of ro-
tationally restrained boundary conditions have been analysed. Considering the
plate to be a default SSSS plate (simply supported on all sides), the spring
constant R is increased for one or more sides, to achieve the 5 different config-
urations below.

4.2.1. Non-classical edge conditions: parametric study. Figure 4 shows the
first four frequency parameters of square plates, with two thickness ratios (0.01
and 0.1) and various boundary conditions, over a wide range of rotational spring
constants of the edge constraint. Among the two thicknesses, the thicker plate
yields a lower non-dimensional natural frequency; consistently for all the five
plates. As the thickness increases, the shear deformation and rotary inertia both
increase. In a Kirchhoff’s plate, the potential energy is proportional to the cube
of the plate thickness, but the kinetic energy is linearly proportional to thickness.
However, in a Mindlin’s plate, the inclusion of the rotary inertia causes the
kinetic energy to become proportional to the cube of the thickness. Thus, the
increase in kinetic energy overrides the increase in potential energy the increase
in thickness of the plate, leading to a net decrease in the natural frequency. This
trend is consistently seen in Fig. 4.

In Fig. 4a, the square plate has all edges equally constrained against rotation
(denoted by R). As the spring constant increases, the frequency of the RRRR
plate rises from the simply-supported plate behaviour to the clamped plate be-
haviour, with the transition zone between 100 < R < 103, beyond which the
spring constant can be safely assumed to replicate the classical clamped condi-
tion. Increasing the thickness of the plate leads to a decrease in the frequency
parameter, which becomes more pronounced for the higher-order frequencies.
Interestingly, this case precipitates a pair of repeated frequencies (ω2 and ω3),
which overlap in the figure, for both the thicknesses and for all spring constants.
This result has been consistently verified with Saha et al. [19]. Figure 4c shows
a similar behaviour for RRSS plate.

Figure 4b,d,e show the frequency parameters for RRRS, SRSR, and SSSR,
respectively. As the limiting value of spring constant is increased from 1 < R < 5
of the transition zone, the ω2 and ω3 overlap (SSSS behaviour); but as the
spring constant further increases in 5 < R < 103, ω2 and ω3 bifurcate apart
from each other due to the increased beam-wise curvatures; for both thickness
ratios, beyond which the spring constant is sufficient to replicate the clamped
behaviour. Increasing the thickness of the plate leads to the shear deformation
and rotary inertia becoming more prominent.
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a) b)

c) d)

e)

Fig. 4. First four natural frequencies of square Mindlin’s plate: a) RRRR, b) RRRS, c) RRSS,
d) SRSR, e) SSSR; thickness h/b = 0.01, 0.1.

4.2.2. Classical end conditions: Convergence study and comparative studies.
Tables 1–4 show the first nine natural frequencies of square plates, with CCCC,
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SSSS, SCSC, and CCCS boundary conditions. The thickness ratio used is 0.001.
Considering an increasing number of participatory modes in either direction,
the fundamental frequency of each plate is seen to converge to the correspond-
ing Kirchhoff’s plate frequency, as shown by Leissa [12] and/or Xiang [23].
The %age deviations of the frequencies by the present with respect to Leissa
[12] have been tabulated. Leissa has tabulated the first six frequencies, while
Xiang [23] has tabulated the first nine of them. The deviation is the mini-
mum for the SSSS plate because, the Timoshenko beam mode shape for a SS
beam is a simple sinusoidal function with lower slopes and curvatures, compared
to those of a CC beam, where the mode shapes contains both sinusoidal and
hyperbolic terms. The next few frequencies are also seen to converge reason-
able well, for the four plates. There are three kinds of frequencies, as seen in
Tables 1–4.

The authors have used this classification as an innovative attempt to distin-
guish the frequencies.
• Type (a): Single frequencies, when the coefficient Cij , has i = j. Here, i =

dominant beam mode shape index in the x-direction; j = dominant beam
mode shape index in the y-direction.
• Type (b): Repeated frequencies or Identical twins: when i is odd and j

is even, or vice-versa. The frequencies are exactly equal, which stand for
repeated roots of the eigenvalue problem. Their mode shapes occur in
pairs, i.e. they are identical, only rotated in space by 90 degrees.
• Type (c): Non-repeated frequencies or Fraternal twins: when i and j are

both odd, or both even. These frequencies are nearly equal to each other,
but they are the conjugate roots of the eigenvalue problem. Their mode
shapes are very different from each other. These frequencies occur when
the contributing beam mode shape(s) and its (their) curvature(s) are not
orthogonal to each other.

There are all the three kinds of frequencies for a CCCC plate. The SSSS plate
has either single (type a) or repeated (type b) frequencies since its contributing
beam mode shapes and their curvatures are orthogonal to each other. This
weakens the cross-coupling terms in the potential energy. For a SCSC and CCCS
plate, all the frequencies are Single, since their beam mode shapes in either
direction are different form each other.

Figure 5 gives the first 3× 3 = 9 mode shapes of a square CCCC plate,
with the dominant Cij . All the nine mode shapes are seen to exactly and accu-
rately match with those produced both experimentally (Amplitude Fluctuation
– Electron Speckle Pattern Interferometry, AF-ESPI) and by FEA as mentioned
in [15]. The diagonal of the table contains the single (type a) frequencies, in
which we find the chessboard-like deflection configuration and nodal patterns
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Cij i = 1 i = 2 i = 3

j = 1

j = 2

j = 3

Fig. 5. First 3× 3 = 9 mode shapes of a square CCCC plate,
for slenderness ratio h/b = 0.01.

(nodal lines are parallel/perpendicular to the plate edges). The diagonals on
either side of the main diagonal contain the repeated frequencies (type b) fre-
quencies. The diagonals adjacent to them contain the non-repeated (type c) fre-
quencies. The (type b) and (type c) frequencies appear alternately in the outer
sub-diagonals. The first row gives the dominating Timoshenko beam mode shape
in the x-direction, i.e. i = 1, 2, or 3. The first column gives the dominating Tim-
oshenko beam mode shape in the y-direction, i.e. j = 1, 2, or 3. Each of the nine
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mode shapes has been depicted based on the dominating Cij , since the total
Mindlin’s plate mode shape is a weighted superposition of the product of the
Timoshenko beam mode shapes in each direction.

Table 5 shows the eigenvectors Cij , for the first nine natural frequencies of
a CCCC plate, exactly corresponding to the respective mode shapes in Fig. 3.
The eigenvectors have been listed as a matrix, with respect to the contribut-
ing Timoshenko beam mode shape index in either direction. In the fundamen-
tal mode shape, it is seen that the coefficient C11 dominates, and the rest of
coefficients are much smaller. For a symmetric plate mode shape, the anti-
symmetric beam mode shape, in either direction, hardly have any contribu-
tion. Similarly, for an anti-symmetric plate mode shape, the symmetric beam
mode shapes, in either direction, hardly have any contribution. This is clearly
seen from the first eigenvector, where, in order to generate the first Mindlin’s
plate mode shape, C11 (dominant), C13, C31 (very mild, equal presence), C33

(trace), have contributions, but coefficients with any even subscript are ab-
sent.

Table 5. Eigenvector matrix of first 3× 3 = 9 mode shapes of a CCCC plate.

i = 1 i = 2 i = 3

j = 1 1st mode shape
(36.036)

2nd/3rd mode shape
(73.498)

5th mode shape
(131.621)

−1.0000 −0.0000 −0.0138 0.0000 −1.0000 −0.0000 −0.0000 −0.0000 −1.0000

−0.0000 −0.0000 −0.0000 0.8680 −0.0000 0.0351 0.0000 0.0000 0.0000

−0.0138 −0.0000 0.0029 0.0000 −0.0404 −0.0000 1.0000 −0.0000 0.0000

j = 2 2nd/3rd mode shape
(73.498)

4th mode shape
(108.752)

7th/8th mode shape
(165.694)

−0.0000 0.8865 0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0234 −0.0000

1.0000 0.0000 0.0404 −0.0000 −1.0000 0.0000 0.0396 −0.0000 −1.0000

0.0000 0.0358 0.0000 0.0000 0.0000 −0.0000 0.0000 0.5892 0.0000

j = 3 6th mode shape
(132.192)

7th/8th mode shape
(165.694)

9th mode shape
(210.241)

0.0266 −0.0000 −1.0000 0.0000 0.0396 0.0000 −0.0045 0.0000 0.0606

−0.0000 −0.0000 −0.0000 0.0186 −0.0000 −0.4687 0.0000 −0.0000 −0.0000

−1.0000 −0.0000 −0.1236 −0.0000 −1.0000 0.0000 0.0606 −0.0000 −1.0000

For the single (type a) frequencies, only one element of the diagonal of the
eigenvector matrix dominates. The 4th mode shape in box (2, 2) of Table 5,
for the single frequency, with the dominating C22, has no contribution from
any other mode shape, since their subscripts have odd digit(s). The 9th mode
shape in box (3, 3) in Table 5, which is single (type a) frequency, has the largest
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contribution from C33, and mild ones from C13 and C31, with a trace of C11. The
contributions from coefficients with at least one even subscript will not occur
here.

For the identical twins (type b) frequencies, eigenvectors are repeated, just
like the eigenvalues are. The second and third mode shapes have repeated fre-
quencies, with similar eigenvectors. A closer look at box (1, 2) and box (2, 1)
of Table 5 shows that C12 and C21 dominate respectively, with the C21 and
C12 a close second in prominence, again respectively. Both these identical twins
have traces of C23 and C32. But they have absolutely no contribution from those
coefficients whose both subscripts are odd, or both are even.

This is once again seen in the 7th and the 8th mode shapes, which have
repeated frequencies, and similar eigenvectors. In Table 5, box (2, 3) and (3, 2)
have C23 and C32 dominating, respectively. The second largest contribution
comes from the counterpart C32 and C23, respectively. Traces of C12 and C21

are present in both. But again, there are no contributions from those coefficients
with both subscripts even, or both odd. However, for the fraternal twins (type c)
frequencies, eigenvectors are starkly different from each other. The eigenvectors
have two equally dominating elements creating the mode shapes.

As seen in Table 5, the 5th and 6th frequencies are fraternal twins, where
C13 and C31 are equally in prominence. Observing box (1, 3) and box (3, 1)
in Table 5, it is seen that there is no contribution from any coefficient with
at least one even subscript, i.e. C12, C21, C22, C23, C32 have no contribution.
However, it is surprising to find that for the ‘junior’ fraternal twin (5th mode
shape, frequency = 131.621), there is no contribution from C11 and C33, leading
to a slightly lower frequency than the ‘senior’ fraternal twin (6th mode shape,
frequency = 132.192). Contributions from C13 and C31 increase the potential
energy of the ‘senior fraternal twin’, leading to a higher natural frequency. The
details may be found in [4]. This is an improved and more specific classification
from those depicted in [3].

Figure 6 shows the first 3× 3 = 9 mode shapes of the square CCSS plate with
the dominant Cij , while Table 6 shows their eigenvectors. Observing the fun-
damental mode shape, it is clear that the top and right edges are clamped (C)
while the left and bottom edges are hinged (S). The deflection contours are
closer to the hinged edge, since the slopes are larger there. The single frequen-
cies in the diagonal of Fig. 6 show a similar trend. In box (2, 1), and box
(3, 2), the nodal line is exactly along the diagonal because there is a C and a S
side each on its either side. However, for the ‘identical twin’ in box (1, 2) and
box (2, 3) respectively, it is away from the diagonal and intersects the two S
edges.

The eigenvectors of identical twins, in the matrix form, are symmetric. But
they have different frequencies due to different diagonal elements of the eigenvec-
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Cij i = 1 i = 2 i = 3

j = 1

j = 2

j = 3

Fig. 6. First 3× 3 = 9 mode shapes of a square CCSS plate,
for slenderness ratio h/b = 0.01.

tors; e.g., box (1, 2) and box (2, 1) have equal non-diagonal terms, but the one
with bigger diagonal term has a higher frequency. The ‘fraternal twins’ have very
different but symmetric/skew-symmetric eigenvectors. All ‘twins’ have at least
two elements equally strong. From the frequencies, it may seem that box (1, 2)
and box (1, 3) are also twins since their frequencies are close. However, whether
two frequencies are twins or not are decided by the symmetry/skew-symmetry
of the matrix-form of eigenvectors.
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Table 6. Eigenvector matrix of first 3× 3 = 9 mode shapes of a CCSS plate.

i = 1 i = 2 i = 3

j = 1 1st mode shape
(27.0599)

2nd/3rd mode shape
(60.5598)

5th/6th mode shape
(114.5983)

1.000 −0.032 0.006 −0.000 1.000 0.019 −0.0120 0.0172 1.000

−0.032 −0.001 0.001 −0.999 0.000 0.021 0.0172 0.0047 −0.100

0.006 0.001 −0.000 −0.019 −0.021 −0.000 0.9990 −0.1000 0.065

j = 2 2nd/3rd mode shape
(60.8059)

4th mode shape
(92.9065)

7th/8th mode shape
(146.2177)

0.064 0.999 −0.014 −0.007 −0.077 0.008 0.0040 0.0107 −0.105

1.000 −0.153 0.020 −0.077 −1.000 0.049 0.0100 −0.1030 −1.000

−0.014 0.020 0.001 0.008 0.049 −0.000 −0.1050 −0.9990 0.156

j = 3 5th/6th mode shape
(114.7405)

7th/8th mode shape
(145.9376)

9th mode shape
(188.5305)

0.000 −0.017 −1.000 −0.000 0.023 0.106 0.0006 −0.0020 −0.024

0.017 0.000 0.107 −0.023 −0.000 1.000 −0.0020 0.0070 0.080

0.999 −0.107 0.000 −0.106 −0.999 0.000 −0.0240 0.0800 1.000

Figure 7 shows the first 3× 3 = 9 mode shapes of the square SCSC plate.
Here, all the plate mode shapes have the chessboard configuration, i.e. the nodal
lines are either parallel or perpendicular to the edges of the plate. The eigen-
vectors of each mode shape has only one dominant participatory element, while
the second strongest participation is merely 2% of even less than the strongest.
Square plates with CCCS and SSSC edge configurations generate similar mode
shapes. All these plates have distinct frequencies, with no twins, whether iden-
tical or fraternal. All the six plates have their mode shapes verified with respect
to those obtained through the Classical plate theory.

4.3. Rectangular plate vibration

Apart from the various boundary conditions and slenderness ratios, the third
parameter explored in this study is the aspect ratio of the Mindlin’s plate.
This parameter has a strong influence on the plate natural frequencies, and
its mode shapes. The eigenvalues and eigenvectors from the eigenvalue prob-
lem in Eq. (3.18) get altered according to the aspect ratio, slowly approaching
the behaviour of a Timoshenko beam, for aspect ratios close to 0.1. The plate
natural frequencies for the classical boundary conditions, namely, SSSS, SSSC,
SCSC, SSCC, SCCC, and CCCC have been verified with Leissa [12].
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Cij i = 1 i = 2 i = 3

j = 1

j = 2

j = 3

Fig. 7. First 3× 3 = 9 mode shapes of a SCSC plate, for slenderness ratio h/b = 0.01.

4.3.1. Classical edge conditions: convergence and comparative studies. Ta-
bles 7 and 8 show the convergence of the first six natural frequencies of rectangu-
lar plates, with classical boundary conditions; with an aspect ratio of a/b = 1.5
and 0.6 respectively. The Mindlin’s plate frequencies from the present method
are compared with those of the Kirchhoff’s plate by Leissa [12], who provides
the first six frequencies (by Ritz method); and also with the Kirchhoff’s plate fre-
quencies by Liew et al. [14], who provide only the first four of them (by Rayleigh-
Ritz method). In the present study, the Mindlin’s plate analysis converges to the
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Table 7. Convergence studies of frequency parameter for Mindlin’s plates with 6 different
boundary conditions, for aspect ratio a/b = 1.5, t = h/b = 0.001.

Plates Sources ω(1) ω(2) ω(3) ω(4) ω(5) ω(6)

CCCC Present 60.782 93.9014 148.850 149.766 179.864 226.995

Leissa [12] 60.772 93.860 148.82 149.74 179.66 226.92

Liew et al. [14] 60.77 93.87 148.83 149.88

SSSS Present 32.0780 61.6887 98.6977 111.0370 128.3111 177.6627

Leissa [12] 32.0762 61.6850 98.6960 111.0330 128.3049 177.6529

Liew et al. [14] 32.08 61.71 98.76 111.57

CCSS Present 44.9006 76.5748 122.3622 129.4444 152.6550 202.7058

Leissa [12] 44.893 76.554 122.33 129.41 152.58 202.66

Liew et al. [14] 44.89 76.58 122.47 129.74

SCSC Present 56.3631 79.0043 123.2106 146.2977 170.1731 189.1925

Leissa [12] 56.3481 78.9836 123.1719 146.2677 170.1112 189.1219

Liew et al. [14] 56.35 79.01 123.28 146.31

SCSS Present 42.5751 69.0693 116.3503 121.1265 147.8101 184.2050

Leissa [12] 42.5278 69.0031 116.2671 120.9956 147.6353 184.1006

CCCS Present 48.2592 85.5897 124.0448 144.0477 158.5559 214.8621

Leissa [12] 48.167 85.507 123.99 143.99 158.36 214.78

Table 8. Convergence studies of frequency parameter for Mindlin’s plates with 6 different
boundary conditions, for aspect ratio a/b = 0.6, t = h/b = 0.001.

Plates Sources ω(1) ω(2) ω(3) ω(4) ω(5) ω(6)

CCCC Present 27.0257 41.749 66.193 66.636 79.940 100.966

Leissa [12] 27.010 41.716 66.143 66.552 79.850 100.85

Liew et al. [14] 27.01 41.73 66.16 66.66

SSSS Present 14.2573 27.4187 43.8656 49.3531 57.0282 78.9637

Leissa [12] 14.2561 27.4156 43.8649 49.3480 57.0244 78.9568

Liew et al. [14] 14.26 27.44 43.90 49.63

CCSS Present 19.9562 34.0350 54.3828 57.53453 67.8474 90.0972

Leissa [12] 19.952 34.024 54.370 57.517 67.815 90.069

Liew et al. [14] 19.95 34.06 54.43 57.48

SCSC Present 17.3786 35.3629 45.4481 62.0773 62.4129 88.9083

Leissa [12] 17.3730 35.3445 45.4294 62.0544 62.3131 88.8047

Liew et al. [14] 17.38 35.37 45.62 62.20

SCSS Present 15.5928 31.1120 44.5880 55.4600 59.5422 83.7464

Leissa [12] 15.5783 31.0724 44.5644 55.3926 59.4627 83.6060

CCCS Present 25.8695 38.1147 60.3402 65.5337 77.6054 92.1735

Leissa [12] 25.861 38.102 60.325 65.516 77.563 92.154
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Kirchhoff’s plate frequencies, since the thickness ratio is as low as h/b = 0.001,
for which the shear deformation and rotary inertia become negligible.

4.3.2. Rectangular plate: asymptotic behaviour extreme aspect ratio. Figu-
re 8 shows the asymptotic behaviour of the plate natural frequencies, for two
thickness ratios, with respect to the aspect ratio of the plate. The CCCC/SSSS
plate frequency is seen to approach to the corresponding CC/SS beam frequency
for an aspect ratio of 0.1, 10. In these plots, for the As > 1, the frequency
has been non-dimensionalized further by 1/A2

S . For As < 1, the plate non-
dimensional parameters for the beam and the plate are consistent. Similarly,
SCSC plate behaves like a CC beam forAs ∼ 10, and like a SS beam forAs ∼ 0.1.
The SSCC square plate frequency descends to the SC beam frequency for both
the extreme aspect ratios. The beam mode shapes in the shorter direction hardly
contribute in generating the plate mode shape, and hence the natural frequency.

Fig. 8. Natural frequency of plates (CCCC, SCSC, SSCC, SSSS) with respect
to aspect ratio 0.1 < As < 10.

5. Discussion

The free vibration of the plate is analysed by the RRM. This requires the pre-
generation of the admissible or trial functions, which are the Timoshenko beam
mode shapes in either direction. The beam mode shape, and the pure-bending
slope mode shape, are functions of the boundary conditions only, which are
influenced by the torsional spring constant. The product of the two Timoshenko
beam mode shapes (i in number in the x-direction and j in number in the
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y-direction) gives the (i–j)-th ‘plate trial function’. Each ‘plate trial function’
has its own contribution to the final plate mode shape. The assumed plate mode
shape, with unknown coefficients, is used to minimize the natural frequency.
The potential energy of the plate due to its curvature and shear deformation
is augmented by the torsional springs at the edges. The pure-bending slopes of
the plate, in both directions, are also required in the estimation of the potential
energy. The kinetic energy is augmented by the rotary inertia. The torsional
springs do not participate in the kinetic energy of the vibration. This sets up an
eigenvalue problem, whose eigenvalues are the squares of the natural frequencies;
and the eigenvectors give the unknown coefficients, leading to the final plate
mode shape.

This study has considered the edges to be specially restrained against rota-
tion. The deflection is zero at all the edges; however, the bending moment at
the end is a fraction of the bending moment for the clamped (classical edge)
boundary condition. The modelling of the special boundary condition as a tor-
sional spring, uniformly distributed along all the edges, allows the continuous
changing of the spring constant [N ·m/rad], in order to generate the plate nat-
ural frequencies for a wide range of edge constraints, from the classical negative
extreme of simply-supported condition to the classical positive extreme of the
clamped (built-in) condition. All the six classical conditions of the combinations
and permutations of clamped and simply-supported edges have been generated
and their natural frequencies have been verified with the existing literature, for
two different thickness ratios (h/b = 0.01, 0.1).

The transition zone of the natural vibration, i.e. the spring constant at which
the plate switches from the ‘simply-supported’ to the ‘clamped’ behaviour, has
been established and verified for various edge conditions, two thicknesses, and
three different aspect ratios. The transition zone is seen to be independent of the
aspect ratios: it is seen to occur between 1 < KR < 1000, for three different as-
pect ratios, i.e. a/b = 0.4, 1.0, 1.5. At a thickness ratio h/b = 0.001, the Mindlin’s
plate analysis is seen to converge back to the Kirchhoff’s plate frequencies. This
is verified for all six classical plates and four different aspect ratios.

The CCCC square plate is seen to produce three different kinds of natural
frequencies; and their corresponding mode shapes have also been categorized
and verified with literature. Each eigenvector, of the first 9 mode shapes of
the CCCC plate has been scrutinized to provide insights into their repeating
and non-repeating frequencies, named as the ‘identical twins’ and the ‘fraternal
twins’. The identical twins have exactly the same frequency, and their mode
shapes are mirror images of each other. The fraternal twins have very close
but different frequencies, but their mode shapes are very different from each
other. Interestingly, the SSSS plate does not have the fraternal twins among its
frequencies, since the cross-coupling between the beam-wise curvatures along
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the two perpendicular directions are absent (since the SS beam mode shape
and its curvature are orthogonal to each other). Both these plates also have
the ‘single’ frequencies (type a), where the same Timoshenko mode shape from
either direction participate strongly in generating the plate mode shape. The
SSCC plate also produces ‘repeated’ frequencies (type b) or ‘identical’ twins. The
other three classical plates (and their special counterparts) have only the ‘single’
frequencies. An asymptotic study of the Mindlin’s plate natural frequency with
respect to the aspect ratio, has also been presented. For a/b > 10, or a/b < 0.1,
the plate begins to behave like the corresponding beam. This study gives insights
into the participation of the Timoshenko beam mode shapes in either direction,
with respect to the aspect ratio. As the aspect ratio becomes non-unity, the
beam-wise participation in the plate mode shape becomes more prominent from
the longer side.

6. Conclusions

Thus, the following distinct conclusions can be arrived at from this work:
• Timoshenko beam mode shapes, derived from the free vibration analysis

of the beam, can be used as superior closed-form trial functions in the
Mindlin’s plate vibration analysis. They encompass the potential energy
of the beam including the special edge conditions.
• Rotationally constrained edges: The use of the dummy rotational spring

constants in Eq. (3.16) eliminates the need for translational springs in or-
der to indirectly achieve the plate boundary conditions. The lateral strain
of the plate at each edge is taken care of by the dummy variables, com-
pensating for the approximation in the plate boundary conditions.
• Transition zone: The edge constraint with KR < 1, behaves like a simply-

simply supported edge, while an edge with KR > 104 behaves like a clam-
ped edge.
• Eigenvectors: The plate mode shapes are highly sensitive to the accu-

racy of the eigenvectors. The dominant cross-coupled participation of the
beam-wise Timoshenko functions in either direction leads to the distinct
classification of the natural frequencies and plate mode shapes.
• Aspect ratio: plates, where one side is at least ten times longer than the

other side, may be safely analysed by the closed-form Timoshenko beam
theory.

The relevance of this work is seen in several distinct ways:
• The modelling of the special edges need not require translational springs

in order to capture the boundary conditions of the specific plates studied
in this work.
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• The range of the torsional spring constant for which the plate may be safely
assumed to behave like a classical edge plate is demarcated. Working with
classical end conditions is easier, and the clear demarcation of transition
zone helps the structural designer avoid the more cumbersome special edge
condition analysis.
• For a slenderness ratio h/b = 0.001, Kirchhoff’s plate theory is sufficient

for at least the first nine natural frequencies. For h/b = 0.01, the shear
deformation and rotary inertia begin to become prominent, especially at
the higher-order modes.
• Theoretical generation of the plate mode shapes requires a very accurate

eigenvector, without which the comparison with experimentally obtained
mode shapes (cymatics) is not possible. Observation of plate mode shape
indicates the corresponding natural frequency as a corollary.
• Modeshape patterns clearly indicate the nodal lines, and thus, the stress

distribution pattern in a dynamic system.
• From the asymptotic study of the plate natural frequencies with respect to

the aspect ratio, the structural designer knows the aspect ratio at which
s/he can safely perform beam analysis of a plate.
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