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The multiobjective optimization of a two-scale thermoelastic problem is considered in this
paper. To compute the solutions, direct thermoelastic analysis with the representative volume
element (RVE) and the finite element method (FEM) analysis are performed. Evolutionary
algorithms (EAs) are used to find a set of Pareto-optimal solutions. The design variables
of the optimization problem are defined so as to describe the microstructure of a porous
solid, whereas the optimization criteria are defined on the basis of macro-scale thermal and
mechanical quantities. A numerical example of optimization is included.
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1. INTRODUCTION

Recent trends in designing novel and smart materials require a combina-
tion of coupled field analysis, multiscale modelling and optimization methods.
For structures under thermomechanical loading, optimization concerns both me-
chanical and thermal properties (e.g., strength, stiffness, low or high thermal
conductivity). The proper functionals for considered criteria have to be defined
in order to solve optimization tasks. Such functionals, which depend on quan-
tities derived from different physical fields (e.g., mechanical, thermal), are very
often contradictory. Moreover, for real engineering problemsoptimization func-
tionals are strongly multimodal. Consequently, an efficient global optimization
method has to be applied [1, 8]. The application of such methods in multiscale
modeling, especially for the coupled problems, is an emerging area of research [2].
The current work is devoted to the optimization in two-scale thermoelastic prob-
lems by means of numerical homogenization and multiobjective evolutionary
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algorithm. The thermoelastic constants of the microstructure are calculated on
the basis of the objective functionals, taking into account the quantities from
the macro-scale level.

2. MULTIOBJECTIVE OPTIMIZATION ALGORITHM

EAs, as a group of bioinspired methods, are resistant to getting stuck in local
minima. Another advantage of such a method is avoiding the need to calculate
the gradient of the fitness function. Multiobjective optimization problems are
formulated, if more than one criterion is considered at the same time, and not
one, but a set of optimal solutions is obtained for the contradictory criteria. Such
solutions are optimal in the Pareto sense (Pareto-optimal solutions). The appli-
cation of EAs is highly desirable in this case, because a population of solutions is
processed at every iteration. The in-house implementation of the multiobjective
evolutionary algorithm (MOOPTIM), based on Pareto’s concept, is used. It is
an improved version of the multiobjective evolutionary algorithm, inspired by
the NSGA-IT [6].

The pseudo-code of the algorithm is presented in Fig. 1. The algorithm uses
two populations @; and P; of the same size and uses non-dominated sorting
procedure for classification of the individuals in population and a crowding co-
efficient to preserve diversity in the population [6]. The main difference between
the proposed algorithm and the NSGA II is based on the changes in selection
mechanism and the application of different evolutionary operators. The proposed
implementation has more evolutionary operators in comparison to the NSGAII.
Two types of mutation (uniform and Gaussian) and two types of crossover op-
erators (simple and arithmetical) are used. The in-house implementation of the
algorithm was tested on several benchmarks as well as in real optimization

MOOPTIM algorithm
begin
10
randomly generate population Q;
evaluate objective functions for Q;
randomly generate population P;
while (not termination condition) do
begin
evaluate objective functions for P;
join population Qi and P; (Ri = Qi + Pi)
use selection (choose P;;; from R;)
copy Piy1 to Qi
apply evolutionary operators for Pii
i+l
end
end

FiG. 1. Pseudo-code of the MOOPTIM algorithm.
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problems, showing its superiority to the NSGA-II [4]. The advantage of using
one’s own implementation instead of the NSGA-II algorithm is particularly re-
markable in the case of multimodal functions and functions having non-convex
Pareto’s or discontinuous Pareto’s front.

3. FORMULATION OF THE PROBLEM

A two-scale thermomechanical model of porous solids is modelled [9]. Linear
uncoupled thermoelasticity is considered in [3]. Microstructures are locally peri-
odical. The representative volume element (RVE) concept, coupled with FEM,
is used [10]. The RVE is modeled with the periodical boundary conditions. The
material parameters for the macro-scale are obtained on the basis of solving a
few boundary-value problems for the RVE in the micro-scale [7, 11]. The elastic
and thermal constants, such as: Young’s modulus, Poisson’s ratio and thermal
conductivity, are homogenized. Six analyses for linear elasticity and three anal-
yses of the heat conduction problem are performed to calculate tensor of elastic
constants and tensor of heat conduction coefficients. The calculation of the val-
ues of the effective constants is done by means of volume averaging technique.
The FEM software packages are adopted to solve boundary-value problems. Mul-
tiscale optimization tasks are formulated as a designing of a size and shape of
the void in the microstructure. A linear thermoelasticity problem is described by
differential equations of heat conduction and elasticity. These equations have to
be supplemented by mechanical and thermal boundary conditions. An example
of such a structure with thermal and mechanical boundary conditions is pre-
sented in Fig. 2, where 73, t;, T, G;, o, T are known: displacements, tractions,

F1G. 2. Two-scale model of the 3D porous body under thermal and mechanical loads.
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temperatures, heat fluxes, heat conduction coefficient and ambient temperature,
respectively.

The implemented homogenization procedures are compared with analytical
models and with non-homogenized numerical models, showing good accuracy of
obtained results [5]. Optimization criteria are defined on the basis of thermal and
mechanical quantities. The following criteria have been defined for: minimization
of the displacement u on the selected part of the boundary I';, maximization
of the heat flux ¢ on the selected part of the boundary I';, maximization of the
porosity defined as the ratio of pore volume to the volume of RVE (3.1)
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First functional is related to the stiffness of the structure, second to the
ability to conduct the heat, whereas third to the total mass of the structure or
amount of material needed for fabrication of porous material (cost).

4. NUMERICAL EXAMPLE

As an example of two-scale micro-macro thermoelastic model, the cuboid
solid of dimensions 100 x 20 x 20 mm made of porous aluminum, is consid-
ered. Thermoelastic material constants for aluminum are as follows: Young’s
modulus £ = 70000 MPa, Poisson’s ratio v = 0.35, thermal conductivity
K =200 W/(m-K), thermal expansion coefficient a = 23 - 107 K=1. The geo-
metry of the macromodel with boundary condition is presented in Fig. 3a. Solid
is fixed in all degrees of freedom on the one surface, and loaded by a uniform
distributed load P = 360 N on the opposite side. The temperature is equal to
0°C on the left side, whilst 100°C is applied on the right side of the block.

Multiobjective optimization tasks concern determining the size and orien-
tation of the cylindrical void in the microstructure by minimization or max-
imization of the functionals calculated on the basis of results obtained from
macromodel. The microstructure is modelled as the RVE with periodic bound-
ary conditions. The effective elastic and thermal constants are obtained from
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Z

F1G. 3. a) The macromodel, b) parameterization of the void in the RVE.

the numerical homogenization. The void in the microstructure is modeled with
cylindrical shape. Four design variables have been defined: radius and height of
the cylinder as well as rotation angle along Y and Z axes. The geometry and
parameterization of the RVE is presented in Fig. 3b. The multiobjective opti-
mization is performed for different variants of optimization, taking into account
different pairs of defined criteria. Moreover, multiobjective optimization that is
taking into account simultaneously all three criteria is also performed.

The parameters of MOOPTIM are as follows: size of the population 20, num-
ber of generations 30, probability of uniform mutation 0.1, probability of Gaus-
sian mutation 0.7, range of Gaussian mutation 0.5, and probability of simple
and arithmetic crossover 0.1. Limitations of the design variables are as follows:
radius of the void R [0.1 = 0.7], height of the void H [0.1 +0.7], and rotations
angles o and g [0 +90].

The sets of Pareto-optimal solutions for different variants of multiobjective
optimization are shown in Fig. 4, whereas the optimal parameters of the void
in the microstructure for selected points on Pareto’s front are collected in Ta-
ble 1.
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F1G. 4. The set of Pareto’s optimal solutions for: a) variant 1 — functionals f1 and fs, b) variant 2

— f2 and fs, ¢) variant 3 — f1 and f2, d) variant 4 — functionals fi, f2 and fo.

Table 1. Optimal parameters of void in the microstructure for selected points
on Pareto’s front (Fig. 4a, Fig. 4b, Fig. 4c).

Parameter Variant 1 — f1 and f3 Variant 2 — fo and f3 Variant 3 — f1 and fa
Point 1| Point 2 | Point 3 | Point 1 | Point 2 | Point 3 | Point 1 | Point 2 | Point 3

R 0.130 | 0.321 | 0.587 | 0.213 | 0.483 | 0.587 | 0.106 | 0.116 | 0.106

H 0.102 | 0.400 | 0.400 | 0.100 | 0.341 | 0.392 | 0.107 | 0.100 | 0.100

a1 44.9 53.5 53.5 36.8 82.9 44.1 85.2 86.2 86.2

Q2 47.8 74.9 73.4 69.6 36.8 77.1 4.4 0.7 0.7
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5. FINAL REMARKS

The coupling of EAs with multiscale modeling of thermomechanical solid
has been presented. Numerical homogenization with RVE concept and FEM
has been used. The considered functionals are typically contradictory, thus the
application of multiobjective evolutionary algorithm based on Pareto’s concept
is a good choice. The results of optimization have been presented in the form
of the sets of Pareto-optimal solutions. It should be underlined that the sets of
solutions are obtained by means of running a single optimization task. More-
over, such a representation can be very useful for a designer, because it carries
information about the nature of the conflict between the criteria. Defining other
criteria can be relatively easily implemented.

ACKNOWLEDGMENT

The research was financed from the Polish science budget resources as the
project 10/040/BK_16/0032.

REFERENCES

1. ABRAHAM A., JAIN L., GOLDBERG R., Evolutionary multiobjective optimization: Theo-
retical advances and applications, Springer-Verlag London Limited, 2005.

2. ANDERSSON J., A survey of multiobjective optimization in engineering design, Technical
Report: LiTH-IKP-R-~1097, 2000.

3. CARTER J., BOOKER J., Finite element analysis of coupled thermoelasticity, Computer
and Structures, 31(1): 73-80, 1989.

4. Drucosz A., BURCzZYNSKI T., Multiobjective shape optimization of selected coupled prob-
lems by means of evolutionary algorithms, Bulletin of the Polish Academy of Sciences,
Technical Sciences, 60(2): 215-222, 2012.

5. DrLuGosz A., BURCzYNSKI T., Identification in multiscale thermoelastic problems, Com-
puter Assisted Mechanics and Engineering Sciences, 20(4): 325-336, 2013.

6. DEB K., PrRATAP A., AGARWAL S., MEYARIVAN T. A fast and elitist multi-objective
genetic algorithm: NSGA-II, IEEE Transaction on Evolutionary Computation, 6(2): 181
197, 2002.

7. FisH J., Bridging the scales in mano engineering and science, Journal of Nanoparticle
Research, 8(5): 577-594, 2006.

8. MICHALEWICZ Z., Genetlic algorithms + data structures = evolultionary algorithms,
Springer-Verlag, Berlin, 1996.

9. TeErADA K., KURUMATANI M., UsHIDA T., KikucHI N., A method of two-scale ther-
momechanical analysis for porous solids with micro-scale heat transfer, Computational
Mechanics, 46(2): 269-285, 2010.



456 A. DLUGOSZ, T. SCHLIETER

10. Zienkiewicz O.C., TAYLOR R.L., The Finite Element Method, 5th ed., Butterworth-
Heinemann, Oxford, 2000.

11. Zoupi T., WRIGGERS P., An introduction to computational micromechanics, 2nd ed.,
Springer-Verlag, Berlin — Heidelberg, 2008.

Received October 18, 2016; accepted version November 3, 2016.



