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In the paper, the concept of minimal kinematic boundary conditions (MKBC) for compu-
tational homogenisation is considered. In the presented approach, the strain averaging equation
is applied to the microscopic representative volume element (RVE) via Lagrange multipliers,
which are, in turn, interpreted as macroscopic stresses. It is shown that this formulation fulfil
automatically Hill-Mandel macrohomogeneity condition. Also, it is demonstrated, that MKBCs
are in fact static, Neumann kind boundary conditions. As a consequence the effective param-
eters computed with this approach are lower bounds of the true effective values. Numerical
analysis illustrating these results is also provided.
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1. Introduction

Computational homogenisation methods are commonly used to approximate
behaviour of the microscopically complex, ordered or disordered materials like
for example soils, rocks or concrete [1, 2]. These methods are shown to be es-
pecially useful when the constituents of the composite exhibit nonlinear, time-
dependent behaviour which cannot be simply addressed by fraction based ho-
mogenisation methods.
Searching for effective behaviour of the composite with computational strat-

egy assumes, that at each macroscopic integration point, a microscopic rep-
resentative volume element (RVE) is defined and boundary value problem is
solved. The very common approach is to use rectangular or cuboidal RVE and
to apply on its faces Dirichlet or Neumann boundary conditions (BCs) represent-
ing some averaged macroscopic quantity, in order to compute another averaged



582 M. WOJCIECHOWSKI, M. LEFIK

macroscopic field. In the case of strain analysis, the most commonly used bound-
ary conditions are: linear displacements BCs which impose average macroscopic
strains, uniform tractions BCs which enforce macroscopic stresses and periodic
displacements BCs which also impose strains, but in the periodic way.
Recently, a new concept in this area has been proposed, namely the so called

minimal kinematic boundary conditions (MKBC) [3–6]. The idea consist in con-
straining the microscopic RVE directly with the averaging equation, instead of
applying consistent linear, uniform or periodic boundary conditions. The only
additional constraint necessary is then rigid movement prevention. It is claimed,
that this approach allows for arbitrary shapes of RVE and eliminates undesir-
able boundary effects which can violate solution, like for example periodicity
enforcement in non-periodic materials.
In this paper we investigate this kind of boundary conditions. It is assumed

that the strain averaging equation is applied to RVE via Lagrange multipliers.
Starting from this formulation we do show that using MKBCs ensures fulfilment
of Hill-Mandel macrohomogeneity condition and we demonstrate that they are
in fact static, Neumann boundary conditions. This leads to the underestimation
of the effective behaviour of the material when using MKBCs as compared to
the periodic or Dirichlet BCs. Numerical example illustrating these results is
also provided.

2. Homogenisation framework

2.1. MKBC formulation

Let’s consider microstructurally complex, solid material for which a repre-
sentative volume element Ω can be defined. In the case of elastic constituents
of the composite and with the assumption of small strains, the local stresses in
the RVE will be given via the constitutive relation:

(2.1) σij � cijklεkl,

where εkl � 1

2
puk,l�ul,kq is the microscopic strain tensor (uk is the displacement

field) and cijkl is an elastic tensor depending on the position in RVE. Indices
i, j, k, l are taken as 1, 2 for 2D and 1, 2, 3 for 3D problems. Averages of the
microscopic strains and stresses over domain Ω are given by:

Eij � 1

Ω

»
Ω

εijdΩ,(2.2)

Σij � 1

Ω

»
Ω

σijdΩ.(2.3)
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These values are assumed to be related via the effective macroscopic tensor
Cijkl:

(2.4) Σij � CijklEkl.

Homogenization problem considered here is formulated as follows: find solution
uk of the equilibrium equations σij,j � 0 defined on Ω, subject to macroscopic
strain Eij in such a way that Eq. (2.2) is fulfilled. Equations (2.3) and (2.4) are
then processed in order to obtain macroscopic stress Σij and material tensor
Cijkl. The above can be viewed as the minimization of the following potential:

(2.5) Πpuq � 1

2

»
Ω

εijcijklεkldΩ � λij

���ΩEij � »
Ω

εijdΩ

�,
where λij are Lagrange multipliers used to apply MKBCs. Note, that because
of symmetry of macroscopic strains, also λij is considered to be a symmetric
tensor. No additional boundary conditions are necessary for homogenisation,
with exception of minimal set of Dirichlet BCs for fixing rigid motion. Solution
is found by equating variation δΠpu, δuq to zero, i.e.:
(2.6) δΠpu, δuq � »

Ω

δεijσijdΩ � λij

»
Ω

δεijdΩ � 0,

where δu is an arbitrary, kinematically admissible virtual displacement and
δεij � 1

2
pδui,j � δuj,iq is the virtual strain. It is immediate to see, that if δεij is

unitary, then from Eq. (2.6) we have:

(2.7) λij � �Σij.

Lagrange multipliers are then interpreted as the average macroscopic stresses,
with minus sign. Furthermore, assuming δεij � εij , we obtain the equation:

(2.8)
1

Ω

»
Ω

εijσijdΩ �ΣijEij � 0,

which is simply the well-known Hill-Mandel macrohomogeneity principle. There-
fore, in the case of MKBC approach, once the solution of (2.6) is found, the
Hill-Mandel condition is certainly fulfilled.
Finally, let’s consider the boundary version of the variational form (2.6),

which can be derived from the Green’s theorem (see e.g. [7]):

(2.9)

»BΩ pti �Σijnjqpδui � δEikxkqdS � 0.
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In this equation ti are tractions, nj – normal vectors, xk – coordinates and
the term δui � δE ikxk � δrui is interpreted as the fluctuation of the virtual
displacement δui at the external boundary BΩ of the RVE. δE ik � ³

Ω

δεikdΩ is

a virtual macroscopic strain. Equation (2.9) must be true for any fluctuation
δrui what implies, that also the condition ti � Σijnj � 0 must hold. Therefore,
MKBCs are in fact static, Neumann kind boundary conditions, even though the
macroscopic stresses are not known a priori, but they are enforced via Lagrange
multipliers.

2.2. Implementation of MKBC with finite element method

Problem of the minimization of the potential (2.5) can be rewritten in the
scope of finite element method as:

(2.10) min
u

rΠpu,λqs � min
u

�
1

2
u
T
Au� λ

T
��ΩE �BT

u
��

,

where u is a global vector of unknown displacements of the length M (M –
total number of degrees of freedom), A is a linear operator of the size M �M ,
B is a problem specific matrix of the size M �N (N – number of independent
macroscopic strain components), λ is a vector of unknown Lagrange multipliers
of the length N , and E is a vector of known, macroscopic strains to be applied,
also of the length N . Solution of the problem is found by differentiation of the
potential defined by (2.10) with respect to unknown u and λ and equating the
results to 0, i.e.: BΠpu,λqBu � Au�Bλ � 0,(2.11) BΠpu,λqBλ � BT

u�ΩE � 0.(2.12)

This is a system of linear equations:

(2.13)

�
A B

B
T
0

��
u

λ

� � �
0

ΩE

�
.

Macroscopic, effective material matrix can be now derived from the observation
that λ � �Σ, where Σ is a vector of unknown macroscopic stresses. Combining
Eqs. (2.11) and (2.12) results finally in the relation:

(2.14) Σ � Ω
�
B

T
A
�1
B
��1

E � DE.
Matrix D can be then straightforwardly transformed into elasticity tensor Cijkl.
One can note that derivation of D and Σ with equation (2.14) does not need
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the explicit solution of the system of linear equations (2.13). However, a kind
of inversion of operator A, with LU decomposition for example, is still required
for this equation.

3. Numerical analysis

In order to illustrate the properties of the MKBC approach, numerical anal-
ysis of the influence of RVE size on the homogenisation results have been per-
formed. Custom software fempy was used for this purpose [8]. 2D rectangular
plane strain elastic RVEs with randomly distributed circular holes and with
the overall void ratio 0.25 have been used in simulations. The elastic matrix
has been parameterized with the Young modulus E � 20 000 kPa and the
Poisson ratio v � 0.3. The macroscopic strain applied to the RVE is taken
as Eij � rr1, 1s, r1, � 1ss � 10�4.
In this numerical experiment the RVE size is understood as the exponential

measure of the number of holes (with base 2 – see Fig. 1). For each size of the
RVE 50 different distributions of holes have been generated and the effective
tensors Cijkl have been computed using different boundary conditions. In the
case of MKBC circular shape of RVE has been additionally used. Figure 2 shows

Fig. 1. Examples of the representative volume elements of the size 2, 4, 6, i.e. with 4, 16
and 64 holes, respectively. All RVEs have void ratio equal to 0.25.

Fig. 2. Deformations (zoom 500�) and shear stresses (in kPa) for the exemplary RVE of
the size 5 under different boundary conditions. From left to right: linear displacement BCs,

periodic displacement BCs, minimal kinematic BCs.
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deformations and shear stresses for the exemplary RVE. Mean values of the
effective moduli C0000 and C0101 for each RVE size are presented in Fig. 3.
Clearly the MKBCs generate soft response of the material and the effective
moduli are approached from the bottom.

Fig. 3. Convergence of the computed elastic moduli to their effective values with increasing
RVE size for different boundary conditions (C1111 on the top, C1212 on the bottom).

4. Conclusions

It has been shown in this paper, that minimal kinematic boundary condi-
tions:

• can be easily applied to the microscopic RVE with Lagrange multipliers,

• fulfil automatically the Hill-Mandel macrohomogeneity principle,
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• are Neumann kind, static boundary conditions, i.e. the effective parameters
computed with MKBCs are lower bounds of the true effective values.

This last conclusion is considered to be the main contribution of the pa-
per, since the MKBCs were presented so far as regular kinematic BCs [3, 4].
One can argue that, in the light of this, the term “minimal kinematic” is a bit
misleading. However, using MKBCs ensures, that the amount of strain applied
to the RVE is really constrained. This would be of great advantage when con-
sidering nonlinear microstructures with damage localization (plasticity, cracks),
where classical static, uniform traction, BCs cannot be used, because of possible
unlimited deformation. MKBCs could be a way to establish lower limit of the
effective behavior in these cases.
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