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STRESS ANALYSIS IN THE EXTRUSION OF BIMETALLIC TUBES

JL.ALCARAZ (BILBAO), JM. MARTINEZ-ESNAOLA
and J. GIL-SEVILLANO (SAN SEBASTIAN)

Stress analysis of the flow of a bimetallic tube in the process of extrusion through a conical
die is presented in this paper. Two materials are involved in the process, one of them being of
lower thickness and exhibiting finer properties than the other. The stress field is determined
by assuming an axially-symmetric radial flow and material incompressibility, with no velocity
discontinuity along the material interface and including friction between the bimetallic tube
and the tools. Different extrusion conditions and different material combinations are compared
to assess their influence on the stress levels in critical zones for the two possible locations of the
finer material. It is concluded that the most influential parameters seem to be the yield stress
ratio and the friction with the die.

NOTATION

A»Al»ALBrBlyB?)

C,Co, K, A1, Az

constants,

ao,a1,a2 mandrel, interface and die angles,
Ao, Ay initial and final cross-sections,
C.R.A. corrosion resistant alloy,
A friction contribution parameter,
Dy, oi; strain rate and stress tensors,
f void growth parameter,
F piston force,
h, W, H, F1, F>, F3; functions of 6,
m local friction factor,
mo, my friction coefficients with the mandrel and die,
r,¢,0 spherical coordinates,
ro, 71 radial coordinates at the entry and exit sections,
Ro, Ry outer radii at the entry and exit sections,
R; initial interface radius,
R,. mandrel radius,
on hydrostatic stress,
u,v,w velocity components,
Y, Y1,Y> yield stresses (1 stands for inner, 2 for outer),
G,€ equivalent stress and strain,
Y mean yield stress.
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1. INTRODUCTION

Bimetallic combinations are increasingly present in many different industrial
applications. Here we are concerned with bimetallic tubes, used for example
for oil conduits in sour wells. In such applications, as in many others, a good
corrosion resistance, as well as a high mechanical strength, are required. Under
these conditions, a bimetallic combination proves to be more economical than a
monometallic tube of a corrosion-resistant alloy.

Bimetallic tubes are produced mostly in the well-known extrusion process.
Much work has been devoted to the stress analysis of this process. One of the
first attempts is the analysis of SHIELD [1], who considered radial flow of a single
material through conical dies, and proposed a numerical solution for the equa-
tions governing the stress field. With the same type of analysis, BLAZYNSKI and
TOWNLEY 2] analysed the process of plug drawing of bimetallic tubing in implo-
sively welded composites under plane strain conditions. A mean strain hardening
is also included. More recently, DURBAN [3] found a complete analytical solution
following a Shield-type analysis and assuming small extrusion die angles. Durban
applied also the results to a multilayered composite in the drawing and extrusion
operations.

A different type of analysis is that of ATKINS and WEINSTEIN [4], who ap-
plied the force equilibrium approach to a bimetallic rod, assuming a rigid-plastic
constitutive model. Later, BLAZYNSKI and TOWNLEY [2] extended the analysis
of Atkins and Weinstein to strain-hardening conditions.

Other analyses [2, 5, 6, 7, 8] use the upper bound approach to determine the
power required for the process. Moreover, the upper bound method has been
used by others to introduce a failure condition in the bimetallic flow [9, 10, 11,
12]. The method, however, does not concentrate on the stress field within the
working zone.

This paper is aimed at the stress determination during the flow of a bimetallic
tube through a conical die. One of the two materials (the thinner layer) is referred
to as the corrosion-resistant alloy and the other as the base steel. The analysis
follows the initial steps of Durban’s, but provides a more general solution valid for
any die angles, and illustrates the influence of the different extrusion parameters
on the stress field.

2. AXISYMMETRIC STRESS FIELD FOR A FLOWING MATERIAL

Our aim in this section is to find a general expression for the stress field
of a single material flowing radially with axial symmetry. Spherical coordinates
(7,8, ) with origin in O are used, as shown in Fig.1a.
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F1G. 1. a) Spherical coordinates used in the analysis, b) geometry of the process.

With the assumption of an axially-symmetric radial flow, the application of
the condition of material incompressibility leads to the following velocity field:

(2.1) U= —— (v=w=0),

where u stands for the radial velocity; v, w are the other two components, and
h(#) is an unknown function of the angular coordinate. The non-vanishing strain
rate components, D;;, easily deduced from (2.1), are D, = 2h/r®, Dg = D, =
~h/r®, D,, = ~h'[2r3.

The isotropic flow implies 0, = 0y and the axial symmetry implies 7., =
7,6 = 0. Accordingly, the von Mises yield condition for a rigid-perfectly plastic
behaviour leads to:

(2.2) (0, —0g)* +37% =Y?,
where Y denotes the equivalent yield stress. Besides, the equations of the isotropic
plastic flow provide:
Trg _ D¢ _ _hl(e)
g, —0g D,—Dg  6h(8)

(2.3)



8 JL. ALCARAZ, J.M. MARTINEZ-ESNAOLA and J. GIL-SEVILLANO
Equation (2.2) can be written parametrically as:

(2.4) o, —0g =Y cos 2V, sin 2V,

. Y
6= —F7=
T \/§
where Y is a parameter {depending on #) that will be determined later.

From the radial and normal equilibrium equations, the following expressions
are derived [1]:

(2.5) 2 (y’x’ + x/§) cos 20 + ctg O sin 20 = %@ :

(2.6) (H ~V3cos 2;1/)' +3sin20 = 0,

where B is an integration constant, and ¥, H are still unknown functions of 6.
Moreover, the radial stress is expressed by:

Y
(2.7) 0r = ~2Blnr + —=H ()

Now, it is convenient to define the local friction factor m as

(2.8) | sin 29|

m = \/§|Tr0| =

Y
according to (2.4),. In nearly uniform flow patterns, friction stresses are relatively
small compared to the yield stress (i.e., |r,g| < Y'). Therefore, |¥| becomes much
smaller than unity. The integration of Eqs.(2.5) and (2.6) in this approach gives
rise to the following expression for ¥:

B ¢ V3K
) — —_—— —_———
(2.9) ’p_‘/g(y 1) 8 Wsing’
where K is an integration constant. Equation (2.9) coincides with that obtained
by DURBAN [3], who proceeds with the analysis by assuming small die angles.
Here no restrictions on the die angle are imposed.
From Eqgs. (2.6) and (2.9), and with |¥| < 1, we obtain:

I~ 6w = — §_> 9__13’__]
(2.10) H = -6V = 6\/§[<Y L)te5 ~ sy mp)-

Integration of (2.10) yields the following expression:

B f§ K 6 V3
(2.11) H= —6\/5[—2 (?—1> lncosa—ﬁlntgi} +A?,
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where A is a constant. Therefore, according to (2.7), (2.4), (2.11) and (2.9), the
stress field is given by

Y ¢
o, = —2Blnr+ —=F = A-—QBlnr—I-12(B—Y)lncosg+3lx’lntg§,

V3

(212) oy =o0,—Ycos2¥W =g, - Y,
Y%m 20 2Y 0 K
rd — B-Y)t .
Tro \/— \/‘ =2( Jtg 5 2 snd

The associated velocity profile is determined by (2.1), where A(#) is a function
satisfying the condition

(2.13) ﬁi{——w_[(—-—l)tgg— K ]

6 h 2 2Ysinég
After integration of (2.13), we obtain
B 6 6K 6
(2.14) h = Cpexp [24 (? - 1) In cos 3 + ?ln tg -2—]

24(£-1) 9 sk
= Co [(cos 5) <tg 5) ] ,
where Cy is a constant.

Once the stress field and the velocity profile are known, only constants in
(2.12) and (2.14) remain to be determined from the corresponding boundary
conditions.

3. SOLUTION FOR A BIMETALLIC TUBE

The stress field derived in the previous section will be used for the stress
determination in the bimetallic combination. This implies that the flow is spher-
ical and perfectly radial. Consequently, no velocity discontinuity can arise along
the material interface. This is evidently an ideal case, not always attainable in
real extrusion processes where the material heterogeneity is likely to prevent a
perfectly compatible flow.

Figure 1 b shows the geometry of the process. A tube composed of two mate-
rials is forced against a rigid conical die flowing over a fixed mandrel. In the no-
tation that follows, subscript 1 will refer to the inner material and subscript 2 to
the outer one. Moreover, the thinner layer corresponds to the corrosion-resistant
alloy and the other to the low-alloyed or base steel.

To obtain the stress solution in the bimetallic tube, the constants in Eq. (2.12)
for each material must be determined. In other words, we must impose the con-
tinuity and boundary conditions.
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Firstly, the normal and shear stresses are continuous across the material in-
terface. Using (2.12)y, the continuity of the normal stress leads to

(3.1) ~2B1Inr + Ay + 12(B; — Y1) Incos %l + 3K, Intg %1— -Y
= —2ByIn7 + A; +12(B - Yy) Incos S + 3K Intg 5 - Yo

and the condition of continuity of the shear stress (2.12)3 leads to

K
L = 9(B; - Yy)t g— -

sin Qi sin [e5]

(3.2) 2(By - Y1) tg—— -

It is interesting to note that Eq.(3.2) implies By = B; = B.

Secondly, two boundary conditions for friction between the tube and the
mandrel and the die are considered. By assuming the friction model given by
(2.8) and constant friction coefficients, mq with the mandrel (at # = ag) and m;
with the die (at 8 = a3), the following two equations are obtained:

(2} K mgYy
3. 2By - Yi)tg— — = ——
(33) (Bi-Ti)te 2  sinag V3

[0 Ky myYs
3.4 2(By; — Yo)tg— — = .
(3-4) (B —Ya)te 2 sinas V3

Note that the friction with the mandrel provides a negative shear stress. Accord-
ingly, a minus sign appears in (3.3).

Finally, on the basis of a pure extrusion process, the axial component of the
total force at the die exit should vanish. Using this boundary condition, the
following expression is obtained:

o] [+ oy
(3.5) 0= /07@1) cos fsin 6 df -|—/a7(,2) cos Bsin 6 df — /Tre sin? 6 df
@0 ! o ' L)
az
- /Trg sin?0df = (-2Blnry + Ay) (sm @ — sin ao) /2
o1

+ 12(B - Y1) [Fi(a1) — Fi(ag)] + 3K [Fa(aq) — Fa(ao))

+ (=2BInr + Az) (sin2 g — sin? al) [2+12(B = Y,) [Fi(az) — Fi(a)]
+ 3K [Fa(az) — Fy(a1)] = 2(B - Y1) [Fs(en) — F3(ao0)]

— 2(B = Y,) [F3(az) — F3(a;)] + Ki(cos ag — cos ay) + Kz(cos ag — cos az),

where the functions Fy, Fy and F3 are defined as:

_ 4 . 1y o 1 L0 , 0
F1(0)_/lncos§c030sm0d9—§sm 01ncos~2—+2cos 5 08" 5,
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6 1 6 6
F(6) = /lntg 5cos€sin0d0 = isinzalntg§ + cos? 5
6 ., . 40
F3(0) = /tg§sm 6df = 2sin 3
At this point, we have a system of five equations, (3.1) to (3.5), for five
constants, Ky, K3, B, Ay, A;. Solving this system we obtain

. ap  moY)
K, = 2(B-Y)tg —
. az  mgYs
Ky = 2(B-Y3)t
(y smag[( 2) g2 \/5]’
Y; moY; @
Y.g%_y.2@ maYy . ol1 . Y__y.z_l
5 2 SIn 5 1 8In 2 -}-—4\/§ sma2+—4\/§ s1na0+( 1 2)sm 2
- . 9 Q2 .9 Qo
sin 7—8111 ?
=Y +A4,
(3.6) A =Y+ 127 (Incos%+sin2%llntg—c—;l)+(],
(3.7) Ay =Y, +12Y, (ln cOs %1— + sin? % Intg %) + C,

with the mean yield stress being defined as

Y, (sm 222 sin ) +Y (sm 24 sin? g_o_)
v = 2 2 2 2
. 2 02 . 2 Qo )
sin 5 sin® —

2

The contribution of friction is determined by the parameter

maYs . + moYy
A e sin ag \/gsmag
sin? 22 _ gin? 20 ’

2 2

and constant C in Eqgs. (3.6) and (3.7) follows from (3.5) as

C = — az—_25in2 — [(—2B Inr + 171\1) (sm oy — sin ag)

+ 12(B - Y1) [Fi(a1) — Fi(@)] + 3K [Fo(a1) — Fa(ap)]

+ ( 2Blnry + Ag) (sm oy — sin al) + 12(B - Y,) [Fi(a2) — Fi(a1)]

+ 3K [Fo(a2) — Fa(en)] = 2(B - Y1) [F3(e1) — Fs(ao)]

— 2(B - Y,) [Fs5(ag) — F5(e1)] 4+ Kiy(cosap — cos ay ) + Ka(cosay — cos az)] ,
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where we have denoted
A=A -C, Ay=4,-C.
Therefore, the stress field for a bimetallic tube can be written as:

— i _a_l . Qﬂ ﬂ

Op = 2(Y+A)lnr+12Y1 <lncos 5 + sin 5 In tg 2)

6

2
6

(3.8) + V3moY; sinaglntg 5 +C +Yi,

o9, = 0y, — Y1,

+ 12 (?-I—A—Yl) lncosg-}- 12 (?+A—Yl> sinz%glntg

TI’LQY] sin (o 7))

4(7+A—Y1)sin2%+ Y

for Material 1, and

— _9(v ﬂ . gﬂ ﬂ

Opy, = 2(Y+A)1nr+12Y2 (lncos 5 + sin 5 Intg 2)

9

2
0

(3.9) - V3myY, sinaglntg§+C+Yz,

092 = a?‘z - Y2 ’

+ 12 (7+A—Y2) lncosg-i- 12 (Y-{-A—Yz) 81112%2-lntg

a;  mqYssinag

4(7+A——Y2)sin2 5 \/3

TT92:2(7+A—Y2)tgg—— —
for Material 2. For small die angles, Eqgs.(3.8) and (3.9) reduce to the solution
given by DURBAN [3].

Finally, the total force required for the process may be estimated by the
integration of forces in the axial direction, z : F = [o0,dS, where dS =
2wrisin 0d6 is a surface element in spherical coordinates, and the axial stress is
0y = 0, cosf — 1,4sin 0. From this calculation, we obtain

aq

(3.10) 271"7“3/0&”

@o

ay
cos O sin 6 d — / r.psin? 0 df

oo

7

a2
cosfsin 6 df + / o
0
=31

To
af r
— /Trg sin?0df = 271'7’3 <—B In —0> (sin2 ay — sin? ao) .

1
23]
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4, RESULTS

In this section, Eqgs.(3.8) and (3.9) will be applied to different geometries,
materials and extrusion conditions. To illustrate the behaviour of the stress so-
lution, let us first consider a particular case for each of the two possible locations
of the corrosion-resistant alloy (C.R.A.), acting as the inner or outer layer. The
data in both cases are taken from an actual process used in Tubacex (Llodio,
Spain). In the notation, we refer to o,, 09 and 7,, as the radial, normal and shear
stress, respectively.

4.1. Application to Inconel 625 and AISI 4130

4.1.1. Inner C.R.A. location. Let us start with the case of an inner C.R.A.
location. The initial tube exhibits an inner/outer thickness ratio of 1/5 and an
inner/outer yield stress ratio of 2.2. The remaining dimensions and parameters
are included in Table 1.

Table 1. Normalized reference values for both locations of the C.R.A. layer. Ro
and R; stand for the outer radius at the entry and exit sections, respectively;

R, for the initial interface radius; R, for the mandrel radius; m¢ and m; for

the friction coefficient with the mandrel and die, respectively, and a0, o1, a2
for the mandrel, interface and die angle, respectively.

Case Y] /Yz o9 oy a2 R1/Ro Rm/Ro Rf/Ro mo m2
inner C.R.A. 2.2 9.15° | 12.5° | 30° 0.436 0.32 0.73 0.1 | 0.15
outer C.R.A. | 1/2.2 | 9.15° | 24.3° | 30° 0.884 0.32 0.73 0.1 | 0.15

The aplication of Egs.(3.8) and (3.9) provide the stress distributions plotted
in Fig.2, after being normalized with respect to the yield stress of the base
steel (AISI 4130). Figure 2a shows the radial stress at § = ag, o and ag, as a
function of the radial coordinate, and Fig.2b displays the radial stress at 7 = rg
and r; (i.e., the entry and exit surfaces, respectively), as a function of the angular
coordinate, #. According to the von Mises model for a rigid-plastic material, a
discontinuity of value ¥; —Y, across the interface is obtained. A small dependence
on the 6 angle can also be noticed in both Figs.2a and 2b. The highest values of
the radial stress occur in the harder material. Furthermore, these values increase
on approaching the die exit. The sign of the radial stress in the outer material
changes during the process, remaining positive at the exit. The inner material,
however, remains always tensile. These residual stresses prove to be important if
they are positive, because they could induce some decohesion in the final product.

The normal stress is plotted in Figs.2 c—d for the same values of # and 7 as in
Figs.2a-Db. It can be seen from Fig. 2 c, that this stress component is continuous
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FIG. 2. Normalized stresses for the inner C.R.A. case: a) radial stress at ao, a1 and @z,
b) radial stress at ro and r1, c) normal stress at ao, o and az, d) normal stress at ro and 71,
e) shear stress. ag = 9.15°, a3 = 12.5°, az = 30°, ro = 0.346 m and 1 = 0.251m.

across the interface and takes negative values in both materials. Figure 2 d shows
that the influence of 8 is also negligible. The module of this stress component
in the inner layer (the harder material) is higher than in the outer layer and
decreases upon approaching the exit (cf. Fig.2c¢).

Finally, Fig. 2 shows the shear stress as a function of 8. According to (2.12)s,
this stress component does not depend on the radial coordinate. Figure 2e also
shows that the maximum absolute value is attained at the interface (as also
pointed out by PAWELSKI and RasP, [13]). The shear stress is negative at the
interface and its absolute value decreases at farther locations. The outer material



16 J.L. ALCARAZ, J.M. MARTINEZ-ESNAOLA and J. GIL-SEVILLANO

being thicker, the sign changes even within this material. The order of magnitude
of the shear stress is lower than that of the two other stresses.

4.1.2. Outer C.R.A. location. Consider now the opposite situation, with the
C.R.A. layer placed outside (i.e., a combination AIST 4130/Inconel 625). In this
case, the inner/outer thickness ratio of the tube is 5 and the inner/outer yield
stress ratio is 1/2.2. Other parameters can be found in Table 1.

Similarly to Fig.2, the stress distributions are depicted in Fig.3. They are
again referred to the yield stress of the base steel. As shown in Figs.3a-b, the
radial stresses are higher in the C.R.A. layer than in the other, what happened in
the case of an inner C.R.A. (although the maximum value is now a little higher).
Likewise, from Figs.3c—d normal stresses in the C.R.A. material are obtained
higher in module than in the base steel, as in Figs. 2 c—d. Finally, the shear stress
shown in Fig.3e has an opposite sign in the harder material and its magnitude
is almost doubled, as compared to Fig.2e. Note that the stress levels in Fig.3
are higher than in Fig.2, because the material interface flows closer to the die.

4.2. Influence of the extrusion parameters

In this section, we proceed with a systematic analysis of the influence of the
different parameters involved in Egs. (3.8) and (3.9). As before, the two cases
(with outer and inner C.R.A.) will be clearly distinguished. The reference values
for the two locations are the same as those given in Table 1.

To establish an appropriate comparison between the different cases, some
characteristic values are selected. According to Figs.2 and 3, and as experience
confirms, the interfacial point at the die exit provides the most dangerous stress
state. Therefore, stresses at this location are selected. Note that two sets of values
can be obtained: one in each material. These values will be again normalized with
respect to the yield stress of the common steel alloy.

4.2.1. Inner C.R.A. location. The results of the stress components for an
inner C.R.A. location are plotted in Figs.4a—f. In this case, the stresses are
computed in the inner interface element, which provides higher levels than the
outer one.

Figure 4a shows the influence of the yield stress ratio (Y1/Y2). It can be
noticed that as this ratio increases, all the stresses also increase, because of the
higher yield stress of the harder material and the more critical heterogeneity
at the interface. The radial stress reaches the highest values and is subject to
considerable variation. Compared to the remaining parameters, the yield stress
ratio becomes one of the most influential variables.



radial stress normalized to Y,

24.33 deg

0.75 08 0.85 0.9 095
radial coordinate normalized to »,

radial stress normalized to Y

10 15 20 25
angular coordinate ([deg)

normal stress normalized to Y;

0.78 08 0.85 0.9 095
radial coordinate normalized to r,

[F1G. 3]

(17]




18 J.L. ALCARAZ, JM. MARTINEZ-ESNAOLA and J. GIL-SEVILLANO

d) -0.2 T
...................... r= 0.725

04F T e 4

o

e -06 4
-
]

= 08 4
<
g
c
<3

c -1F E
@
s

a 2 E
®
g8
5

e -lLap g

ro= 1.000
re —\
a8 . R N L
5 10 15 20 25 30
angular coordinate {deg]
e) 03

Q.28 4

E i 3 / S
S
-4

_:,: 0.15+ E
©
g

S Oif 1
-]
a

£ oost ]
@
o
H
o

] of q

005+ 4

01 A . . .
s 10 15 20 25 30

angular coordinate [deg]
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e) shear stress. ap = 9.15°, a1 = 24.3°, ap = 30°, ro = 0.346 m and r1 = 0.251m.

In Fig. 4b, the effect of the die angle is illustrated. With larger angles, the
shear and normal stresses increase, while the radial stress diminishes. The ex-
planation of this behaviour is that a greater die angle makes the stresses “more
compressive”.

The effect of the interface radius is shown in Fig.4 c. An increase in this mag-
nitude produces similar effects as the increase in the die angle, i.e., the absolute
value of negative stress components (especially the normal stress) increases and
the radial stress decreases. Two reasons could be given to understand this be-
haviour. Firstly, the stresses are more compressive when the interface approaches
the die. And besides, a higher interface radius makes the thickness of the harder
material (inner location) greater.
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The results of the influence of the mandrel size are shown in Fig.4d. The
effect of an increase in this parameter is opposite to that of an increase in the
interface radius, because with larger mandrels, the thickness of the inner harder
material decreases. In particular, we obtain higher radial stresses, lower normal
stresses and almost identical shear stresses.

It has been verified that the final size of the tube (or, equivalently, the ex-
trusion ratio) has no influence on the stress levels. Although this result could be
surprising, it follows naturally from the consideration of a spherical radial flow
and vanishing of the resulting axial stress at the die exit section (see (3.5)).

The effects of the friction coefficients (mo and mg) are plotted in Figs.4 e and
f, respectively. The friction with the mandrel slows down the flow of the inner,
harder material. For this reason, Fig.4e shows that the positive radial stress
increases and the shear stress becomes more negative as mg increases. There
is also a tensile effect on the normal component. On the other hand, Fig.4f
shows that the friction with the die makes the radial stress increase, since it
involves a hindrance to the flow. On the other hand, the shear stress becomes
“less negative”, although this influence is small due to a larger distance from the
die. A tensile effect of an increasing mg coefficient on the normal stress is also
observed.

4.2.2. Outer C.R.A. location. In the case of a tube with an outer C.R.A.
location, stresses at the interface point in the outer material are plotted in
Figs.5a—1f. As the outer layer is now extruded with more difficulty, shear stresses
assume positive values in the C.R.A. and a change of sign takes place in the base
steel. Normal stresses remain negative.

The influence of the yield stress ratio Y; /Y5 is shown in Fig.5a. As expected,
the shear and radial stresses increase with that ratio, due to a higher C.R.A. yield
stress combined with a stronger discrepancy in the plastic flow. The normal stress
slightly decreases in module as the yield stress ratio increases.

Figure 5b illustrates the effect of the die angle. At greater angles, the radial
and normal stresses become more compressive (as in Fig.4b) and the shear stress
increases. The latter effect is attributed to the fact that larger die angles involve
more flow disturbance in the outer layer, thus making the shear component at
the interface increase.

The influence of the interface radius, shown in Fig. 5 c, differs from the inner
C.R.A. case. The absolute value of normal stress decreases with the increase in
the interface radius, because of the corresponding decrease in the thickness of
the outer layer (the C.R.A.). On the other hand, as the interface approaches the
die, the shear stress slightly increases and the radial stress also increases due
to the more favourable geometric conditions for the inner material to flow and,
consequently, the more pronounced effect of the inner material on the outer one.
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The tensile effect of the inner material affects the variation of both the normal
and radial stresses.

By assuming several mandrel sizes, Fig.5d is obtained. It can be seen that
on increasing the relative size of the mandrel, only small stress variations are
derived: a lower normal stress, a lower shear stress and a higher radial stress.
Since the increase in the mandrel size implies the decrease in the inner material
thickness, the effect of the yield discrepancy between the layers turns out to be
reduced. This leads to a decrease in the normal and shear stresses at the interface.
The radial stress, however, increases because the inner yielding is facilitated by
a larger mandrel.

Finally, the variations in stress with the friction coefficients mgy and mq are
plotted in Figs.5e and f, respectively. Similarly to the inner C.R.A. case, an
increase in both friction coefficients involves a tensile effect on the normal stress
and a higher radial component (because this component opposes the flow). How-
ever, the shear stress, being now positive (i.e., in the sense of the flow), decreases
slightly with the mandrel friction and increases with the die friction. As shown
in Fig.5e, the effects of an increase in the mandrel friction are similar to and
more pronounced than those of an increase in the mandrel size. The flow of the
softer material is impeded by the mandrel friction, giving rise to lower shear
stresses and also lower absolute values of normal stresses at the interface. On
the other hand, an increase in the die friction (Fig.5f) prevents the flow of the
outer, leading to an increase in the shear and radial stresses. For coefficients
higher than 0.25, it is also noticed in Fig.5f that there is a change of sign in the
normal stress, due to the proximity of the interface to the die.

5. DUCTILE FAILURE

Up to now stress fields have been derived and the influence of the extrusion
parameters on the maximum stress at the interface has been determined. In this
section, a ductile failure criterium will be established so as to assess the most
critical conditions and variables in the process.

Let the void growth parameter f be defined as:

(5.1) f= /exp <1'5%) dz, o, >0,
0

where & and Z are the equivalent plastic stress and strain, respectively, and oy,
is the hydrostatic stress. According to (5.1), this parameter represents an accu-
mulated plastic strain corrected by the hydrostatic stress and will be considered
here as an indication of ductile failure. It is based on a factor deduced by RICE
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and TRACEY [14]. The fracture condition will be locally fulfilled when a critical
value of f is attained.

The results of evaluation of the parameter f, normalized with respect to
the uniform equivalent strain (In Ag/Ay, where Ay and A ; are, respectively, the
initial and final cross-section of the tube), are given in Tables 2 and 3. In the case
of an inner C.R.A. location (Table 2), the most important variations take place
for the friction coefficients, mg and my. On using high friction coefficients, the
normal stress at the exit point of the interface decreases considerably, assuming
even positive values. Another relevant variable is the yield stress ratio, Yi/Ya,
which gives rise to variations similar to those of the friction coefficients. Finally,
on decreasing the final radius (i.e., increasing the extrusion ratio), the factor
f assumes lower values. Although the absolute value of f does not change, as
commented in Sec.4, its normalized value diminishes since the total uniform
strain increases at higher extrusion ratios. Nevertheless, the values obtained are
very small.

Table 2. Evaluation of the void growth parameter, f, at variable extrusion
parameters for an inner C.R.A. location.

INNER C.R.A.
Y/ Y, f R;/Ro f mo f m f
2.2 0.128 0.553 0.074 | 0.1 | 0.128 | 0.15 | 0.128
3.5 0.52 0.64 0.095 | 0.3 | 045 0.3 0.92
5 0.87 0.727 0.128 | 0.5 | 0.75 0.5 1.57

Table 3. Evaluation of the void growth parameter, f, at variable extrusion
parameters for an outer C.R.A. location.

OUTER C.R.A.

LZ/Yi| f |Ri/Re| f |Rm/Ro| f |Re/Ro| f |mo| f |m2| f
2.2 [0.202} 0.708 [0.004| 0.085 0.12 | 0.553 |0.112|0.1]0.202{0.15(0.202
3.5 0.49 | 0.795 | 0.092| 0.205 |0.155] 0.64 |0.149]0.3]0.343| 0.3 1.1

5 0.69 | 0.882 |0.202 0.32 0.202 | 0.727 [0.202 | 0.5( 0.48 } 0.5 | 2.15

Other parameters such as the die angle, the interface radius and the mandrel
radius are not included in Table 2. In the first place, on increasing the die angle
(above 30°), negative hydrostatic stresses are obtained in the selected point.
Therefore, there will be no tendency to void formation under these conditions. On
the other hand, the same behaviour is also encountered on increasing the interface
radius or on decreasing the mandrel radius. In both cases, the C.R.A. thickness
increases and, as mentioned before, higher compressive stresses are attained, the
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hydrostatic stress becoming negative along the interface. Accordingly, Eq.(5.1)
cannot be evaluated for these three parameters.

The results for the outer location of the C.R.A. layer are included in Ta-
ble 3. Again, the friction coefficients (especially with the die) provide the largest
variations in the factor f. The yield stress ratio also gives rise to considerable
increments in the void growth parameter.

On the other hand, on increasing the interface radius or the mandrel radius,
an increase in the factor f can be noticed, since higher tensile stresses are then
obtained. The final radius affects the parameter f very little: higher extrusion
ratios give rise to lower factors. Finally, the die angle is not included in Table 3,
for the same reason mentioned before for Table 2.

6. DIscussION

A brief discussion on the method and results is presented in this section. In
the first place, it should be noted that the analysis leads only to the first approach
to the real process. The accuracy of the results is strongly affected by simplified
assumptions on the flow. Nevertheless, the method proves to be quick and easy,
and allows for an efficient analysis of the effects of the many parameters involved
in the process.

The bonding along the interface does not play any role in the method. There-
fore, the solution would be valid for a real flow with perfect bonding, where the
velocity continuity is imposed along the material interface.

The piston force computed from Eq.(3.10) provides a value very similar to
Durban’s and of the same order as Blazynski and Townley’s. It differs, how-
ever, from the actual industrial process because it does not take into account
the discontinuities at the entry and exit sections, and other possible redundant
contributions.

A comparison between the present results and finite element calculations (see
[15]) under similar conditions shows that stress values of the same order are
obtained (for both locations of the C.R.A.). Main difference takes place in the
shear stress distribution. Here this component was shown to be independent of
the radial coordinate. However, from the FE results follows a relation, showing a
change from negative values at the entry to positive values at the exit. Notwith-
standing this fact, the magnitude is of the same order. The sign and values of
this shear stress along the contact zones (with mandrel and die) has also been
checked. Finally, the qualitative effects of some of the extrusion variables (the
yield stress ratio, the die angle and the thickness ratio) can also been verified by
the FE results in ALCARAZ [15].
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7. CONCLUSIONS

An analytical approach to the stress field in the extrusion of bimetallic tubes
has been performed and the influence of some relevant parameters of the process
has been discussed.

The radial and normal stress components show very small dependence on the
angular coordinate, what means a quasi-uniform flow. Moreover, the shear stress
component does not depend on the radial coordinate (as a result of the spherical
radial flow assumed in the analysis).

For an inner location of the harder material, the stress plots show that the
radial stress is positive and the shear stress negative in the harder material. The
signs change in case of the opposite location. Normal stresses are negative in all
cases and show a decreasing trend on approaching the die exit.

A comparison of the stress levels at the exit interfacial point shows that higher
stresses are obtained with higher yield stress ratios and die angles, and when
the proportion of the harder material increases at an inner location. However,
lower shear and radial stresses are obtained with an outer location of the harder
material.

The stress values obtained at the interface are also used to assess a factor
deciding on the ductile failure of the tube. It is concluded that the most influential
parameters seem to be the yield stress ratio and the friction (especially with the
die). Higher values of the factor are also obtained when the thickness of the
harder layer decreases. Increasing the die angle, on the other hand, produces
higher compressive stresses and thus helps to prevent the void growth ductile
failure.
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