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THE INFLUENCE OF GENERAL SURFACE LOADING
ON PENETRATION OF A CIRCULAR PUNCH
INTO AN ELASTIC STRATUM

B. ROGOWSKI and D. ZAREBA (LODZ)

The first of the authors (B.R.) derived an expression for the pressure distribution inside a
circular region with vanishing shear tractions and normal displacements, due to the application
of the forces distributed along the circumference on an elastic transversely isotropic half-space.
This result is used to derive the relationships between the forces, moments and indentations for
apunch acting on an elastic half-space. The results are given in terms of elementary functions.
The influence of an annular punch encircling a central punch is considered. The stress intensity
factor of Mode I related to non-symmetric stress distribution in the vicinity of an external crack
under general surface loading, symmetric with respect to the crack plane, is also presented in
terms of elementary functions.

1. INTRODUCTION

The influence of a concentrated normal load applied to the surface of the
half-space outside the circular punch on the displacement and rotation of the
punch, was presented by GALIN [1]. References to the studies related to inter-
action between a system of circular punches, indenting an elastic half-space in
frictionless contact problem, and elegant analytical formulation and approximate
results obtained were presented by GLADWELL and FABRIKANT [2].

In this paper we show the influence of general surface loading (normal and
tangential, symmetric and asymmetric) on displacement and rotation of a circu-
lar punch on an elastic transversely isotropic half-space. The relations are given
in terms of closed-form expressions of elementary functions. The result is used
to derive approximate relationships between forces and displacements, and mo-
ments and rotations for the central punch and annular punch encircling it. Also,
we obtain the results for the stress intensity factor of Mode I concerning an
external crack.
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2. THEORY

Consider a single rigid flat-ended punch of radius a in frictionless contact with
a transversely isotropic elastic half-space z > 0 with planes of isotropy parallel
to z =0 (Fig. 1).

F1G. 1. Geometry, coordinate system and loading conditions.

If the normal displacement under the punch is
(2.1) w(r,8) = wy + arcosd,

then the normal pressure exerted by the punch is

wo -+ 2ar cos

¥

2
(2:2) po(r,6) = ZC.02 0

where G,C = E,/(1 — v?)s152(s1 + s2) is an elastic constant which reduces to
E/2(1 — v?) when the half-space is an isotropic medium (s; = sy = 1) with
Young’s modulus E and Poisson’s ratio v [3]. The contact stiffness G, C of trans-
versely isotropic material is defined by Young’s modulus E, and Poisson’s ratio
vyg in the isotropic plane and by two material parameters si, s2, [3].

Now suppose that unit loads are applied to the surface of a half-space, and
distributed over the circumference of a circle of radius r’ (r’ > a) (Fig.1). This
load will produce an additional contact pressure under the punch. This additional
pressure, which is such that, together with concentrated load, it produces no
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additional normal displacement under the punch, was found by Rogowski; it is
equal

(2.3) Pe(r;0) = pe(r) + ge(r) cos 0,

where

_ 1 . V2 — g2 ¥
Pl = E e e h )
lgrm
ge(r) = =2 .

7r27"2(7"2 _ r2)m

The formulae for pe(r) and g.(r) are obtained from the results (3.14) and
(3.15), (ROGOWSKI [3]), and (2.5), (3.10), (3.13), (ROGOWSKI [4]). We note that
the pressure p.(r,0) associated with axial loadings (13,1}) is independent of
the material constants, while the one associated with the radial ring load (1)
depends on the material parameter

(2.4)

_ G, C
Veicss +as

Here c;; are the elastic constants and G,C is the contact stiffness of a trans-
versely isotropic material. The shear loading in the z direction (1) does not
produce normal surface tractions in the frictionless contact problem [3]. Equa-
tions (2.2), (2.3) and (2.4) show that if the displacement under the punch is
given by Eq. (2.1), then the normal pressure under the punch is the following:

(26) p(r, 0) =po (r’ 9) + pe("', 0)
2 1 Vri2 — g2 Jo
= —(G,Cwp - — [ 13———F — 11—
Va2 — r2 2r P2 —r2 !
YoryVri2 — o2
cosf ;.

3
+ [2anCr - —-——_7“’2(7"2 =)

(2.5) Yo

General equilibrium of the punch requires
27 @

P = //p(r,é‘)rdrd@,
00

27 a

M = //p(r,O)r2cos(9drd9.
00
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We now integrate this expression over the circle r < a, 0 < § < 27 and use
the integrals

21 a

r
!!ﬁdrdo = 27('0.,

27 a

T _ 1 . -1 a
0//.(7“12 — r2)\/E§___r2drd9 = 27r—————rl2 = sin (ﬁ)’
(2.8) or )
2 _2_3
f/\/____rcos fdrdf = 37ra,
2r a 7‘/2
2 _ 1[8N
0/0/ ’2_‘7‘2 _Tzcos 9drd9—7r[——————msm (r’) a],
to obtain
P = 4GZC’U)0(1 — E 13 sin“l g— - 11'190ﬁ y
(2.9) T r! r!

8 3 151 . _4/a a a?
M=§GzCoza —2-’;- [sm (F)—F 1—;3 )

Equations (2.9) are the main results of this paper. The condition of complete
contact requires p(r,6) > 0 for all r < a and 0 < 6 < 2. This condition is
satisfied if p(a™, ) > 0, i.e.

1 13 Yo
(210) GZC’LU() - Zl'. (ﬁ 11 )
—2GCaa+1—-———a—>0 r > a.

T ,r.l2,/7-/2 __a2 -

3. APPLICATIONS
3.1. Special cases of the loading conditions

When in an annular region b < r < ¢ (b > a) axial forces py(r’) (symmetric
part) and pa(r') (asymmetric part), and tangential radial forces t; (r') are applied,
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then from Eq. (2.9) we obtain

C [+
P = 4G,Cwoa — 4/r’pl(r')sin‘1 (%) dr' +4a190/t1 (r') dr',
b b

(3.1) .
M= g—GzCaa3 - 2/r'2p2(r')F (%) dr',
b
where
(3.2) F(z) =sin"'z — 2v1 — 22, z= g, .
T

For example, if pi(r') = p1, p2(r') = p2 and t;(r') = t; where p; and p; and
i1 are constants, integration yields

P =4G,Cwya — 2p [02F1 (%) — bR (%)] + 49¢t1a(c — b),

(3.3) M= §G’zCaa3 - gpz [ch (E> — b F (9->
3 3 c

b
+ 243 (ch”l (f) _ ch? (é)ﬂ
a a
where
(3.4) Fi(z) =sin™' 2+ zv1 — 2

and F(z) is defined by Eq. (3.2).
In this case of loading the condition of complete contact requires

a a

(35)  Pa>3M +2(py— p1) [02(c —o)F (2) _R(b—a)F (3)]

Formulae (2.9) yield relations between forces, moments, displacements, and
rotations for punch indentation, including normal and tangential loadings of
a transversely isotropic half-space outside the punch. In the particular case of
%o = 0, the radial shear loading (1;) produces no additional pressure under the
punch. For an isotropic material, the value ¥y = 0 corresponds to incompressible
material (v = 1/2). The radial symmetric shear loadings do not influence the
condition of complete contact for arbitrary function ¢ (r'). If the inclination of
the normal axisymmetric load to the radial direction is 8y, we can find the results
for this case by applying a normal ring load of magnitude 13 sin 6y, and a concen-
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trated shear ring load of magnitude 13 cos 6y, and by superimposing the results.
If the inclination of the normal asymmetric load to the z-axis is 8;, we can find
the results for this case applying a normal ring load of magnitude 15 sin 6, since
the shear ring load acting in the z-direction of magnitude 15 cosfy/r’ produces
no normally directed surface tractions under the punch in the frictionless contact
problem. The general case of annular region of loading discussed above contains
an interesting special case, namely b = a.

Consider two concentric rigid punches: circular punch of radius a and annular
punch of radii b and ¢, encircling it. The axial force and bending moment applied
to the annulus are denoted by P; and M. If p1(r') and pa(r') are the symmetric
and asymmetric parts of the contact pressure under the annular punch, then
equations (3.1) reduce to

[
P = 4G,Cwpa — 4/7"'])1(7"')sin_1 (%) dr',
(3.6) b
M = gGZCQas - 2/r’2p2(r')F (%) dr'.
b

If we now assume that a/R, R = (b+ ¢)/2, is small, we may take

)
(3.7) F (%) ~ F (%)

_ b+c
)
and obtain
P = 4G,Cwga — 2P, sin~! <3>
T R
(3.8) g 1 a
. ° 3I_ - —
M = 3GzCaa 7rM1F (R)

A study of the errors made by using the approximations (3.7) shows that they
are of small order and decrease with decreasing ratio of the thickness of annulus
to its mean diameter 2(c — b)/(c + b). Formulae (3.8) yield the approximate
relations between the axial forces and displacement, and between the bending
moments and rotation of the cylindrical punch. If we expand the functions of ’/
in Egs. (3.7) in the Taylor series in the neighborhood of the central point ' = R
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of the annulus b < v’ < ¢, then retaining two terms of this expansions we obtain
-1/2
o1 a oso=1 a ’l"l a a,2
sin (F) = sin (E) - (E - 1) I (1 - ﬁ) ,
a a r’ A a? T/
F|—= Fl—])-2|=—- — - = .
(&) =r(&) -G () (1 R?)

The second terms on the right-hand side of Egs. (3.9) yield from Egs. (3.6)

a a? -1/ 2 4 /
AP:__ 1__ = _ - n,.12 1
R( R2> g w/pl(r)r ar

(3.9)

I

In the cases in which b >> a and the ratio of annulus radii is near unity, AP
and AM represent a small contribution to the total solution. To find AP and -
AM, we make use the solution for contact stresses under the annular punch,
[5]. However, for those practical problems where a/R is small, the approximate
relations (3.8) yield good results suitable for engineering applications.

3.2. Contact stresses related to the special cases of the loading functions

Equations (2.9) for the total applied forces are obtained directly, without
previous determination of the stress distributions under the punch. We consider
some special cases of the loading functions and determine the additional contact
pressures p,(r) and g.(r). The cases in which the normal and tangential loadings
are distributed uniformly over the circumference of a circle of radius r’ (r' > a)
on the surface of a half-space with resultants 13, 15 and 1; — yield the additional
pressures which are given by Egs. (2.4).

Let us first consider the case in which the normal loadings outside the punch
are uniform and equal p; — symmetric part, and ps — asymmetric part, and act
over a circular ring of inner and outer radii b and c, respectively.

Equations (2.4) show that

2py | [ —a? b —a? R i
(311)  pe(r) = -2 [\/a2 R R gy
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(311)  q(r)=-2 [—GSTTT; ("h_l ('f;) - (g)) _Sin_1<:(cc_—f)>

L a? +sin=! rb — a? 4 sin-1 rb + a2

a(c+r) a(b—r) a(b+r)
The stresses p.(r) and ¢.(r) increase with ¢ for a fixed value of b. Therefore
we cannot increase c indefinitely. This case contains an interesting special case,
namely b = a. Let us consider the case in which the solid is loaded radially by

the forces directed away from the origin, and the shearing action is variable over
a circular ring of inner and outer radii b and c, respectively, as follows:

2
(3.12) tl(r') =1 (%) y b<r < c,
where t; is constant.
Then
5.13) pe(r) = 2 o le =)
. € -

T beva: —r?

This problem contains three other problems as special cases, namely, (i) b = a
and c finite; (ii) b > a and ¢ — oo; (iii) b = a and ¢ — oco. Case (iii) is a case
of radially decaying shear load on the boundary of a half-space. We can deduce

the results for these three cases from Eq. (3.13) by setting b = a and/or letting
¢ — 0.

3.3. Application of normal and shear loadings on an external crack

We consider an external crack located outside of a circle of radius a in an
infinite elastic body. The crack surfaces are subjected to the axisymmetric and
asymmetric distributions (with respect to axis @ = 7 /2) of normal and tangential
tractions. These loadings are assumed to be symmetric with respect to the plane
z = 0. Such a crack problem is a particular case of the more general case of
the punch problem considered in the previous section and the formulae obtained
there can give its immediate solution. In the external crack problem where both
sides of the crack are loaded by arbitrary normal tractions acting in opposite
directions and shear tractions acting in the same directions, due to the symmetry
of the problem we obtain w(r,8) = 0 and 0,,(r,6) =0 for r < a, 0 < 8 < 27.
This implies that wy = 0 and a = 0 in Eq.(2.1) and po(r,8) = 0 in Eq. (2.2).
The tensile stresses in the regionr < a, 0 < 6 < 27 are p.(r) = —p.(r) and
qc(r) = —ge(r), and

(3.14) Pe(r,0) = pe(r) + ge(r)cosd, r<a, 0<6<2m,
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where
2 r'p1(r")V ’2—a 7
Pe(r) = TVaE =2 [/ L /g_rz _’90/t1(7"')d7'/]»
(3.15) N 4

pa(r)Vr a?
qC(r) \/T/ ,2 — 'r2 dr y

and where p1(r'), p2(r’) and t1(r') denote the prescribed normal and tangential
forces acting on the crack surfaces. Note that the shear loading in the z direction
(13, Fig. 1) produces no stresses in the region r < a, 0 < 6 < 2.

For t1(r') = 0 the results (3.15) are in complete agreement with those obtained
by LOWENGRUB and SNEDDON [6]. Defining the stress intensity factor of Mode I
as follows:

(3.16) Kr = lim 1/2(a —r)p(r,6),

rT—a~

we obtain

2 oor'pl(r’)
— ! I
10 K=o [T —190/t1( )dr+acos€/m

Assuming the constant normal tractions and the shear radial traction in the
form of Eq. (3.12) in the annular region b < ' < ¢, the stress intensity factor is
obtained as follows:

(318)  K;=—2- [pl (VEa—a -V —a&) - t1090’(c - b)

a

m/a be

+ p2a (ch_1 (E> —ch™? (9)>]
a a

For p, = 0 this result agrees with the result obtained for an isotropic solid
(Yo = (1-2v)/2(1—v)) by PARIHAR and KRISHNA RAO ([7], Egs. (45) and (70)).
For real materials the quantity Jg is real and positive. For example, ¥y takes
the values: 0.1833; 0.2474; 0.4020 for cadmium, laminated composite consisting
of alternating layers of two isotropic materials with x4/ = 0.5, h/h = 2 and
¢ = 10* MPa, and for E glass-epoxy composite, respectively. In the media having
transversely isotropic material properties, the degenerate case for which 45 — 0
may occur, similar to the case of an incompressible isotropic material when
v = 1/2 implies ¥y = 0. It is the case in which 1 — v,9 — 2v;,1,, tends to zero
and, in consequence, c;; increase to infinity (v;; — Poisson’s ratios). In this case
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vanishes the following sum of the strains: &, + €gg + 2vp.€,,. If v, = 1/2 and
1 —vpg — v, =0, it is an incompressible material. In this case ¥y vanishes, as
follows from Eq.(2.5). Note that constant normal tractions must be applied in
a bounded annular region to obtain finite value of the stress intensity factor,
while the radially decaying shear traction given by Eq. (3.12) may be applied in
unbounded region (¢ — o).

Assuming the radially decaying normal tractions in the form

Qa a
(3.19) pl(’“’) = Pl—r—,, Pz(T') = Pzp ) a<ber <e,

where p; and ps are constants, we obtain

o K= 2 (0 0) o 2)
o (st (3) - (2)) cont]

In this case loading ps may be applied in an unbounded region, while p; in a
bounded region. To obtain finite value of the stress intensity factor, the loadings
applied in infinite region ' > b (b > a) must be decaying as 7'~2 for p;(r’) and
t1(r") and as '~ for po(r'). For the case of decaying tractions in the from of
Egs. (3.12) and (3.19) and for b = a, K takes the value

(3.21) K; = 2\/6 [p ch™ (2) + %pz cos B — 19,
T

where c is bounded.
To obtain the crack opening displacement it is required that K; > 0 for all
of #. This implies K; > 0 for § = w. This condition and Eq. (3.21) yield

(3.22) pich™! (2) > gm + 170 .

The cases in which the loadings are distributed over the circumference of a
circle of radius 7' (r' > a) on both surfaces of the crack, with the total loads
P (=13), Q (= 1;) and M (= 1}), are given by Egs. (2.4), (3.14) and (3.16).

The stress intensity factors corresponding to these cases are given by

1 P Qo Ma
63 = [ o T )

For M = 0 and isotropic material this result agrees with the result obtained
by PARIHAR and KRISHNA RAO ([7], Eqgs. (60) and (79)). The formula (3.23) is
valid if

2
(3.24) P> M“ =2 Qﬂm/l _ &
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In opposite case the stress intensity factor is negative, the crack may close
and the boundary conditions are of unilateral nature. The general expressions
related to the stress intensity factors in the crack problems have been given
recently by the author in ROGOWSKI [3-4]. Of course, results of this subsection
may be obtained from those fundamental solutions.
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