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STABILITY OF SLIGHTLY WRINKLED PLATES INTERACTING
WITH AN ELASTIC SUBSOIL
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The first aim of the contribution is to formulate an engineering theory describing the
linear stability of periodically waved shallow shell-like structures (slightly wrinkled plates,
cf. Fig. 1) interacting with a Winkler foundation. On the basis of the proposed theory, the
effect of elastic foundation on the value of a critical force is investigated. The second aim is
to compare the proposed model of wrinkled plates resting on elastic medium with the known
theories of orthotropic plates. It is shown that the obtained solutions depend on the shell
wavelength parameter I. The general results are illustrated by an example.
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1. INTRODUCTION

The subject of the paper is a thin periodic shallow shell-like structure, shown
in Fig. 1 and referred to as a slightly wrinkled plate. The plate is made of
a linear-elastic homogeneous material. The structure interacts with an elastic
medium modelled by the Winkler foundation. It is assumed that the wrinkled
plate wavelengths [;, [, are small enough compared to the minimum characteristic
length dimension L of the projection of the structure on a reference plane Oz ;.
At the same time, the thickness & of the shell under consideration is supposed
to be constant and small compared both to the structure length parameter !
(where [ :=+/(l1)? + (I2)?) and to the midsurface minimum curvature radius R.
Therefore 6 < | <« L, and [ will be called the mezostructure length parameter.
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F1G. 1. A scheme of the wrinkled plate on an elastic foundation.

From a formal point of view the structure under consideration can be de-
scribed in the framework of the well-known theory of thin elastic shallow shells.
However, due to the mezo-periodic shape of the wrinkled plate midsurface, this
direct description leads to the shell equations with periodic highly-oscillating
coefficients, which are too complicated to be used in the analysis of stability
problems and numerical calculations. That is why various approximate models
of this problem were used. For example, the wrinkled plate can be modelled as
an orthotropic plate (TROITSKY [4]; SEYDEL [5], where the plate mean flexural
stiffness has to be determined. Moreover, the orthotropic plate investigated in [4]
was periodically waved in one direction only. The structure investigated in this
paper can be periodically folded in both directions. The first aim of this research
is to formulate a simplified mathematical model of the wrinkled plates resting
on the elastic medium, which can be applied as a useful tool for investigations of
stability problems. The second aim is to show the influence of foundation on the
values of critical forces for a wrinkled plate interacting with this foundation.

The paper is a continuation of previous investigations given in (MICHALAK,
WoZNIAK and WOZNIAK [1]) and its main thesis is that the effect of the structure
length dimensions Iy, ls play a crucial role in the analysis of stability of wrinkled
plates in an elastic medium. Throughout the paper indices 4, 7,k,... run over
1,2,3, being related to the orthogonal Cartesian coordinates zj, z2,z3, with the
vector basis e; shown in Fig. 1. Indices e, 3,7, ... Tun over 1, 2 and are related to
the shell midsurface parameters #',6?. We also introduce non-tensorial indices
a,b,c,... which run over the sequence 1,...,n. The summation convention holds
for all aforementioned sub- and super-scripts. The time coordinate is denoted by
t and the overdot stands for a time derivative.
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2. DIRECT DESCRIPTION OF A WRINKLED PLATE INTERACTING WITH
AN ELASTIC MEDIUM

Let the midsurface of the undeformed wrinkled plate be given by the
parametric representation z' = RY(6',6%), where 61,62 are surface parame-
ters. In the sequel, the above parametrisation is given by z! = 01, %2 = 2
and 23 = 2(0',6%) € II, where IT is a regular region on the plane Oz;zs.
Moreover, the plate is periodically folded in z!- and z2-directions, conditions
2% = 2(6',6%) = (6" +11,6%) = (6,62 + I5) hold in the whole domain of the
definition of z(-). The above shell-like structure is said to be shallow when values
of function z(-)/l and all its derivatives up to the second order are small as com-
pared to unity. Under notation A = (0,1;) x (0, l2), function z(-) is referred to
as the A-periodic functions, A being called the representative plane element of a
wrinkled plate. Using the known notations: G = Rfa, 8a =Gle;,n=g); xg, /
|81 X g2|, we obtain the first and second metric tensor of the undeformed mid-
surface go5 = GQG,-;;, bop = "in1| g» respectively. The Ricci tensor €44 together
with gog, bog, g = detgapg are A-periodic functions of z;,z2. For shallow shells
we assume, (GREEN, ZERNA [2]); gop = 0ap, g = € = det(eq) = 1, bap = 208

and the Christoffel symbols related to 9op are negligibly small: { cf 8 0.
The displacement vector field of the wrinkled plate midsurface is denoted by
u = v/(x,t)e;, external (surface) loadings by p = P(x,t)e;, x € II, external
boundary forces by p = p'(x,t)e;, x € I and p is the mass density averaged
over the shell thickness and related to the midsurface unit area.
In the framework of the technical non-linear theory for thin elastic shallow-
shells (WOZNIAK [3]), we obtain:

(i) Strain-displacement relations in which non-linear terms involving gradients
of u, are neglected:

\ . 1 .

(2.1) €ap = GlaUig) + EU?QU:-;,/&, Kag = N'Uj o8,
(ii) Constitutive equations:

(2.2) n® = DH*Ye,5,  m = BH 4

where ]
HeBw — 5 {gaugﬂv + g™ gPr 4 y(eorebr 4 eaueﬂv)} ,

D =E§/12(1 -v%),  B=E8/12(1 - 1?)
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E, v, being the Young modulus and Poissons ratio, respectively.

(iii) Equations of motion:

(2.3) / (n® e qp + M kop)dIT + C% / putdll = / (p*6u; — kudoud)dIl
I I n

+ / pi6u;doll,
oIl

deqp = Gi(aéui,ﬁ) + u?adug,g, 0Kap = niéui,aﬁ,

which have to hold for any virtual displacement field du;. Since eng, Kag, nof.
m® are highly-oscillating A-periodic functions, Egs. (2.1) - (2.3), are too com-
plicated to be used in engineering calculations. The first aim of this research is to
formulate from Egs. (2.1) - (2.3), a simplified model of a stability of the wrinkled
plates in elastic medium, using the modelling procedures initiated in [1].

3. MODELLING APPROACH

The modelling approach to the waved plates was presented in (MICHALAK,
WozNIAK and WOZNIAK [1]). In this research, the stability of a wrinkled plate
interacting with an elastic foundation will be investigated. Bearing in mind that
the wrinkled plate has A-periodic structure, we introduce the notation A(x) =
A +x, for every x = (z!,2?) such that A(x) C IT; A(x) will be called a periodic
cell, assigned at a point x. The main concepts of the proposed approach are:

1° Averaging operator < - > (x). Let f(z) be an integrable function defined
on IT. We shall use the notation

(3.1) <f>(m)=llil2 / f(2)dzrdzs,
Alz)

if f(-) is a A — periodic function then < f > is constant.

2° Long wave approzimation. A differentiable function F(x,t), x € II, will be
called the regular macro-function if for an arbitrary z € IT and every x € A(z),
the following formula holds:

(3.2) (V) [< FF > (z) =< f > F(z)]  where Fe{F,VFF,.}.

3° Let ho(-), a = 1,....,n, be a system of n A-periodic eigenfunctions which
are obtained as approximate solutions to the eigenvalue problem on a periodicity



STABILITY OF SLIGHTLY WRINKLED PLATES... 273

cell A with periodic boundary conditions. The choice of these functions depends
on the form of free vibrations of the cell A. These functions are linear independent
continuous functions defined on R?, having continuous first and second order
derivatives. Moreover, values h%(x) have to satisfy conditions h%(x) € O(1?),
h(x) € O(l), h%4(z) € O(l), < ph® >= 0. Functions h® will be referred to
as the micro-shape functions. Generally speaking, every linear combination of
micro-shape functions describe disturbances of the plate displacements u;(x, t),
caused by the periodic plate mezostructure. Hence, the choice of these functions
depends on the problem under consideration (the form of the periodicity cell A,
the class of micromotions, which we want to investigate). :
The main assumption of the proposed modelling approach is the Basic Kine-
matic Hypothesis which restricts consideration to a class of motions given by

(3.3) ui(x,t) = Uj(x,t) + h*(x) V3(x,t), x=(zh2?) eI, t>0,

where U;(+,t), V;*(-, ) are arbitrary regular macro-functions called macrodisplace-
ments and oscillation correctors, respectively; and h®(-) are the micro-shape func-
tions, the choice of which is postulated in every problem under consideration.
The macrodisplacements U;(x,t) =< u; > (x,t) describe the averaged motion
of the wrinkled plates and functions h*(-)V;2(-,t) describe the local displacement
oscillations due to a periodic structure of these plates.

We also assume that gradients a local displacement oscillations are small
compared to gradients of macrodisplacements U 3 e

(3.4) Ra(®) Vi (x,8) < U (x).
Hence Egs. (2.1) can be approximated by

. 1 .
(35)  ap = Gallip) +hp Vi) + GURUsp,  siap = ni{Uiag + hpVi?).

It was shown in [1] that the aforementioned modelling hypotheses lead from
Egs. (2.1) - (2.3), (3.1) - (3.5) to a certain averaged model of a wrinkled plate
resting on the elastic medium. Let us define I7° := {x=(z1,20) el :x+AC
IT}. Following [1], for every x € IT° and every instant ¢, let us introduce the
system of averaged stresses given by

N%(x,t) =<n%gg > (x,1), M (x,t) =< m®n > (x,1),
(3.6)
N%(x,t) =< n%g.h% > (x,t), M%(x,t) =< mP Rl gn > (x, 1),
x € I71°.

Substituting the right-hand sides of Eqgs. (3.3), (3.5) into Eqs. (2.3), bearing in
mind formulae (3.6), and applying the aforementioned approximation formulae,
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after assuming that #* and p* are macrofunctions, we obtain the condition

(3.7) / [Maﬂ 80U o5 + N®. §U 4 + <naﬂ >U,3a U3 g+ < k > U3Us
I

¢

+(N% + M%) - §V° + <kh“h">V 6‘/3} dIl + jt / (<p>t'1 86U

+<ph“hb>V° - o'va) dIT — [ - 6UdI + [ pdUsdolI,
i a7

which has to hold for every macro-function §U, §V*, and where coefficients
< k >, <kh“hb> describe an influence of elastic foundation on the averaged

(global) behaviour of the structure.

4. THE AVERAGED MODEL FOR STABILITY ANALYSIS OF A WRINKLED PLATE

After applying the divergence theorem and du Bois-Reymond lemma to
Egs. (3.7) and using (3.6), we arrive at the system of equations in macrodis-
placements U; and correctors V;* constituting the governing equations of the
averaged theory of wrinkled plates on an elastic foundation. The equations of
motion written down in the coordinate form are

MY - N1+ < p> U =p7,
M3 — N3 — (<0 > U3) g+ KU+ < p > U% =),
(4.1)
N Moy < phoepb > V5 =,
Nlo 4 pp3le 4 KOYB L < phoht > VB =,
Constitutive equations have the form
N* = DU 4 + D**V*,
N = DV’ + D¥U 4,
M8 — BaﬂryaUms + Beabye,
M*® = BV’ 4+ B*U 4,

where we have denoted
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(4.3)
BB = B<Haﬂ’)'5h,r75n ® n>,
Bab = B<Ha/376hilaﬂh?,y§n ® n>,
K=<k>,

= <kh“hb>.

We assume that on the edges of middle plane of the wrinkled plate, forces P8
are acting. From Eqs. (3.7) we obtain the boundary condition

g
!

(4.4) N —MIE =P zeal,

where N7 and M7 are defined by Egs. (4.2).

In order to calculate critical values of forces P8 which are applied to the
middle plane of a wrinkled plate we assume that macro-displacements of the
middle plane of the wrinkled plate satisfy U7 = 0, and that there are no external
loads and body forces. Then from Egs. (4.1), (4.4) we obtain the equilibrium
equations

M2, - N3+ KU® - PPPU3 5 =
(4.5) NYla 4 pple —
N3[a+M3Ia +Kabe3 = 0.

Solving Eq. (4.5) for the given boundary conditions for Us, we will find that
the assumed buckling of the wrinkled plate in an elastic medium is possible only
for certain values of P®%. The smallest of these values determine the desired
critical values of P25,
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Let us observe that since h® € O(12), the coefficients D*®, D2 K% depend on
the mesostructure length parameter [, and hence, the aforementioned equations
describe the mesostructure length-scale effect on the critical values of forces PP,
Moreover, coefficients K and K @b describe the influence of elastic foundation on
the values of these forces.

5. APPLICATIONS

We shall investigate the stability of a rectangular slightly wrinkled plate rest-
ing on an elastic foundation of the Winkler type. We assume that the wavelengths
of a midsurface are mezo-periodic and equal l; = Iz = [. Using Egs. (4.2), (4.3),
(4.5) we obtain the system of equations for Us = Us(x,t) and V& = V2(x,1).
For the sake of simplicity we restrict the function describing disturbances in the
plate displacements to the first term in series he(-)VA(-,t). Introducing only one
meso-shape function h®(-) = hl(-) = h(-), after notation Ve (x,t) = Vi(x,t), the
system equations describing stability of wrinkled plate on elastic medium will
take the form

(5.1) B<H““N3N3>U3,uu + 4B<H1212N3N3>U3,1212

+ 2B<H1122N3N3>U3,2211 + B<H2222N3N3>U3,2222
—D3311U3,11 _ D3322U3’22 _ D311V1,1 _ D322V2,2 + KU3
—P1U3 41 — 2P12U3 19 — P2Us 2 = 0,

D¥'Us; + DMVi = 0,
D322U3,2 +D22‘Z2 — 0’

where we have denoted

(5.2) D'= D<H“11(G%h,1)2> + D<H1212(G}h,2)2>
+B<H1“1(n1h,11)2> + 2B<H1122(n1)2h,11h722>

+2B<H1212 (nl h’12)2> + 2B<H1221 (nlh’21)2>B<H2222 (nlh,22)2>
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5.2) D* = D(H*!(G3h1)? ) + D{ H??2(G3h,,)*
27%, »

[cont.]

+B<H11”(n2h,11)2> + ZB<H1122(n2)2h,11h’22>
+2B<H1212(n2h,12)2> n 2B<H1221(n2h,21)2> + B<H2222(n2h,22)2>
D3I — D<H“”(G§)2> +D<H2121(G§)2>
3322 D<H1212(G§)2> +D<H2222(G§)2>,
D¥! = D<H““G%G%h,1> + D<H2“2G}G3h,2>,

D322

il

D<H122IG§Gi”h,1> + D<H2222G§G%h,2>,

K=<k>.
Eliminating correctors V; by means of Egs. (5.1)2 and (5.1)3 we obtain the fol-
lowing equation describing the stability condition of a wrinkled plate resting on

Winkler elastic foundation:

(53) B<H1111N3N3>U3’1111 + 4B<H1212N3N3>U3’1212

+2B<H1122N3N3>U3,2211 + B<H2222N3N3>U3,2222

31142 322y2
— [D3311 _ (D ) J U3 11 ~ [D3322 _ (D ) J U3,22 +KU3

D22
~PHU;34; ~ 2PY2U; 15 — P22y 99 = 0.

In order to compare both the microstructural and orthotropic plate models in
the analysis of stability of wrinkled plates on an elastic foundation, we shall
investigate the simple problem of a stability of a long rectangular plate resting
on the Winkler elastic foundation simply supported and uniformly compressed
along the edges in direction of z! (Fig. 2). In this case we shall look for solution



278 B. MICHALAK

of Egs. (5.3) in the form

x

(5.4) Uz = Z Wy, SIN O T,

m=1

o i

F1G. 2. A scheme of a long rectangular plate compressed along the edges in direction of zt.

where oy, := mm/L, L being the span of the plate (L > I). Substituting the
right-hand sides of Egs. (5.4) into (5.3) we obtain the following critical value of
a compressive force:

n [D3311 B (D311)2} _

(5.5) (P = Blam)t +

K
(am)2 Dt

Now consider a slightly wrinkled plate which will be treated as an orthotropic
plate. In this case, the equilibrium equations have a form (TROITSKY [4])

(5.6) B11Us 11 + kUs = P1Us 13,
where [4, 5]

1 E&
(5.7) Bn

T 1 (nf/D212(1 — 2)
Substituting the right-hand sides of Egs. (5.4) into (5.6) we obtain the critical
value of a compressive force

(5.8) (P)er = Bui(am)® + )
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Let the shell midsurface be given by z = 4—lO—sin (ZTWQ:I

of the periodicity cell and conditions from Sec. 3 which have to be satisfied by
a micro-shape function, we assume the micro-shape function in the form kA =

2
12sin (Tﬂxl) In this case, formulae (5.5) and (5.8) for the critical forces, yield

). Due to the form

a) microstructural model

(5.9) (P)ee=D

m2m? (6)2 KIL?

12 \L m2n2

+D 27T2(f/l)2 _ y= 27!'2(f/l)2 ,
L+ 4 (F/D)*(6/ D> (L)1)

b) orthotropic plate model

2,,,2 2 2

12 \L 1+7r2(f/1)2+m27r2'

The smallest value of (P!)., will be obtained, for the Winkler coefficient
k =10"'D/§?, by taking m = 1. In Fig. 3 for a wrinkled plate with thickness
6 = L/1000, the diagrams are shown of the smallest value of critical forces (P
versus ratio [/L, where the continuous line describes the critical forces for a
microstructural models, while the dotted line is related to critical forces for the
orthotropic plate models. The value of critical forces for orthotropic plate model
is independent of the ratio I/L being equal to (P!, = 9.187 - 10~7D. For the
microstructural model, the value of critical force is a function of the ratio [ /L,
and for I/L = 0.10 is equal to (P') = 9.488 - 10-7D.

Now let us consider the stability of simply supported rectangular wrinkled
plate in an elastic medium, which is uniformly compressed in direction of z!. In
this case we look for solutions of Eqgs. (5.3) in the form

[o 0] o0
(5.11) Us = Z Z Wimn SN @ z! sin B, 22,
m=1n=1

where ap, := mn /L and B, := nn/Ly, Ly, Ly are the lengths of the wrinkled
plate where L; >> I and Ly > I. Substituting the right-hand sides of Egs. (5.11)
into (5.3) we obtain the critical value of compressive force
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FiG. 3. The smallest value of a critical forces (P!!)., for a long rectangular plate resting on the
Winkler elastic foundation versus ratio [/L, for a microstructural and a orthotropic models.

om)? 2)? 31132
(5.12) (PY)e, = B(( m()an32(ﬁ") ) L (;;)Z " {D3311 _ (DDH) }

L[ pu (DP22] (B
D% | (ap)?’
. . . (2r J\ . [2m ,
Let the shell midsurface be given by z = fsin 5T sin | ==z and the

2 2
shape function be assumed in the form h = 12 sin —lﬁml) sin (——;1:52> In this

case, for a constant thickness ¢, formulae (5.2) yield
_ 2
pil = p? = p>_Y —l* + B12n® ({—) :
(5.13)

D331l — 3822 _ D%ZWZ ({_)2’ D3l = p322 — D§—;—Vﬂ2[ (i) .
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The smallest value of (P!!)., will be obtained by taking n equal 1. Thus, the
expression for the critical force becomes

_ () 1(L1)2 )" | K(Ly)?
(514 (Pll)cr—Dﬁ (E) (m+m(L2)2> t e

O ) )

For a square plate (L; = Ly = L) from Egs. (5.14) it is obvious that the smallest
value of (P'').. and the number of half-waves m depend on the modulus of
foundation £ and mesostructure length parameter .

(10

v

10 50 100 150

Fic. 4. The smallest value of a critical forces (P'!), versus parameter a of the modulus of
foundation; the number of half-waves m and ratio I/L are used as parameters. Here it assumed

that k = a(s—Dz-.
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Let us assume that the wrinkled plate with thickness § = L/1000 is interact-

ing with an elastic foundation in which elastic modulus has the value k = asy:
The diagram in Fig. 4 there presents the smallest value of critical force (P!),,
for numbers of half-waves equal to m = 1,2, 3,4 versus the parameter « from the
modulus of foundation k, where ratios [/L = 0.1 and I/L = 0.01 are used as a

parameter.

6. CONCLUSIONS

From the above example it follows that the proposed averaged theory of
wrinkled plates resting on an elastic medium can be successfully applied to the
stability analysis. The above examples lead to the following conclusions:

(i) The smallest value of a critical forces and the number of half-waves m
depend on the modulus of foundation k£ and the mesostructure length dimension
l.

(ii) The effect of the mesostructure length dimension ! plays an important
role in the stability analysis.

In order to compare the results related to the microstructural models of wrin-
kled plates in an elastic medium with the known theories of orthotropic plates, we
have restricted ourselves to an illustrative example. Nevertheless, this example
leads to the following conclusion:

(i) The value of critical force for orthotropic plate models is independent of
the mesostructure length dimension [. On the contrary, in the microstructural
models it depends on the mesostructure length dimension /.

(i) The difference between the value of critical forces calculated in the frame-
work of orthotropic plate theories and using the microstructural models for the
ratio L/l = 10, is very small and equal 3.2% but for the ratio L/l = 100 this
difference is equal to 168%.
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