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The effect of variation of the shear wave velocity profile of a layered soil on a minimal mass
of a rigid machine foundation under behavior constraints on vibration and normal stress contact
amplitudes and side constraints is numerically studied. The nonlinear programming problem
has been solved by an iterative application of a sequential linear programming. The dynamic
response of the machine foundation to unbalanced forces is evaluated including the dynamic
soil-block interaction. The mixed-boundary value problem of elastodynamics was formulated as
the system of Fredholm integral equations of the first kind with the Green’s functions for a half-
space as kernels and contact tractions as unknowns. The solution of the integral equations was
accomplished numerically by a Boundary Element Method. In addition, the effect of embedment
of the block into the soil was included by means of a local dynamic boundary used to simulate
the backfill. Numerical results illustrate the sensitivity of the optimum design with respect to
variations in problem preassigned parameters.

1. INTRODUCTION

Reciprocating machines are frequently encountered in practice and they are
usually mounted on rigid-type reinforced concrete blocks, [1, 2]. The machine
foundations transmit the dynamic loads to the supporting soil and its vibrations
are due to dynamic deformations of the soil medium. In the modern advanced
analysis, the dynamic properties of the inertial supporting medium are descri-
bed by means of the complex-valued impedance functions, [3, 4, 5]. To find the
functions, a mixed boundary-value problem must be solved, in which displace-
ments are prescribed at the contact area between the foundation and the solil,
and tractions vanish at the free surface of the soil. In addition, the radiation
conditions at infinity must be satisfied. Given the impedance functions of the
soil and geometrical and inertial properties of the machine-block system, it is
possible to calculate the dynamic response of the machine foundation to unba-



184 7. SIENKIEWICZ and B. WILCZYNSKI

lanced forces. The operational requirements of the machine limit the amplitudes
of foundation vibration to small values. Furthermore, in practice some additional
structural and psychological criteria should be fulfilled because the wave energy
transmitted through the underlying soil from the vibration foundation must not
cause harmful effects on other precision equipments or machines and adjoining
structures and should not be annoying to persons standing close to the vibrating
machinery. Generally, the design of a machine foundation is a trial-and-error pro-
cedure that should lead to a safe and economical foundation block satisfying the
design criteria, [1, 2]. The engineering decision-making process may be helped by
integrating the dynamic analysis model with the optimization procedure, [6, 7].
It leads to the rational design of a dynamically loaded machine foundation that
is the best of all possible designs within a prescribed objective and a given set
of behavior constraints. This approach was developed by the authors in the pa-
pers [8 — 11]. The objective of this investigation is to evaluate the influence of the
nature of soil profile on the optimal mass of massive rigid rectangular foundation.

Generally, natural cohesionless as well as cohesive soil deposits increase in
rigidity with depth as a reflection of the increase in overburden pressure. The
increase may be continuous or discontinuous as in the case of layered system,
and it is influenced by the void ratio, the level of effective confining pressure,
the intrinsic characteristics (e.g. grain shape and size distribution, mineralogical
composition), the degree of saturation, vibration history and others. A typical
case is the presence of a stiffer material at a relatively shallow depth. The dynamic
response of a machine foundation on a soil stratum underlain by a stiffer medium
can be substantially different from the response of an identical foundation on a
uniform half-space. Thus it is imperative to study the sensitivity of the optimal
design of the machine foundation with respect to variations in parameters defining
such soil deposits, [12]. In this paper two types of idealized soil profiles under the
base of foundation block are considered: (1) uniform layer overlying a uniform
half-space (shear wave velocity is constant in the layer and the underlying half-
space with finite jump between them), and (2) layer with linearly varying elastic
properties overlying a uniform half-space (shear wave velocity is linearly varying
in the layer under the base being constant in the underlying half-space). The
assumed shear wave velocity profiles idealized in a rational way the variations of
the shear wave velocity with depth in real sites as found by measurements.

2. STATEMENT OF THE PROBLEM

Reinforced concrete block resting on the soil medium is dynamically loaded
by unbalanced forces of a reciprocating machine (Fig. 1).
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F1G. 1. Machine-foundation-soil system.

The problem of optimum design of vibrating 3-D machine foundation coupled
to a half-space is a standard nonlinear programming problem and can be stated
as (see Box. 1.):

Box 1. Problem formulation

Find the vector of design variables D (dimensions of block) such that
W (D) - weight (mass) of the concrete block — min
subject to behaviour constraints:

e on vibration amplitudes Omax < Qfeas
¢ on amplitudes of contact stresses ¢ < Ofeas
and side constraints D; <D < D,,

where: D1 and D, are the lower and upper limiting values of a vector D, and symbols
with index feas mean allowable values of behaviour constraints.

3. RESPONSE ANALYSIS IN THE FREQUENCY DOMAIN

Consider a linearly elastic soil medium to occupy a region V U Vg € R3.
Within this region we identify a half-space subregion V below the base of the
block to represent the soil in its natural state, and a sublayer Vg to represent the
disturbed soil (backfill) surrounding the block. The rigid body representing the
machine-block system occupies an open, bounded region V* € R® and we choose
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an inertial reference frame, {ej, ez, es} so that the centre of mass of the body is
located at the origin
(3.1) / peerXd2 =0

Ve
where prer is the density of the rigid body in the reference placement V* and X
denotes the initial position vector of a particle, measured from the origin of the
inertial reference frame. We also attach at the centre of mass a set of nonparallel,
noncoplanar unit vectors {by(t), ba(t),bs(t)} fixed in V*. This time-dependent
set of vectors is called the body frame since they move with the body. It is as-
sumed that at time ¢ = 0, the body frame is parallel to the inertial frame. The
perfect bonding exists between the half-space V' and the rigid body along the
contact surface Sg and between the sublayer Vp and the body along the contact
surface Sc It is assumed however, that at the horizontal interface S B petween
the half-space and the sublayer, the condition of continuity of dlsplacements is
not satisfied and that the surfaces of the separated regions are free of tractions.
Then the tractions at the base of the rigid body are equal to those of the body
placed on the soil surface, while the backfill reactions are to be evaluated inde-
pendently by a local modelling. It should be noted that the local approach to
modelling of the embedment effects is supported by experimental investigations
leading to reasonable agreement between the theory and experiment, [13]. Deno-
ting the Fourier transform of time function f(t) by f (w), the linearized equations
of motion for the idealized machine-block system in body frame can be written
in the frequency domain as

(3.2) ~w*MU(W) = P(w) + Ps(w),

in which w is the excitation frequency, U(w) is the Fourier transform of the
displacement vector, f’(w) is the Fourier transform of the load vector, f’s(w) is
the Fourier transform of the interaction force vector, and M is the inertia matrix.
The generalized displacement vector U(w) involves

(3.3) U(w) = {A1(), As(w), Ag(w), 61(w), O2(w), B3(w) }

where (A;(w), 2( (w)) are the translations of the centre of mass of the

rigid body and (©1(w), ©2(w), O3(w)) are the rotations. The external excitation
is represented by the vector

(3.4) (W) = {P1(w), Bo(w), Py(w), M1 (w), Ma(w), Ms(w)}

which includes the resultant force 2 (w),]sg(w),pg(w)), and the resulting mo-
ment (M;(w), Ma(w), M3(w)). The generalized force Pg(w) that the soil exerts
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on the block
(3.5) Ps(w) = {P(w), P (w), B (w), M (w), M5 (w), M5 (w)}

includes the reaction force (P§ (W), P§(w), P§(w)) and the reaction moment
(M7 (w), M5 (w), M5 (w)). It is found that

(3.6) Ps(w) = / R (x)T"" (x,w)dS(x), xé€Sc=SNUSE
in which the 3 x 1 vector T (x,w) = {T7" (x,w), TR (x,w), T8 (x, w)} represents

the traction that the soil exerts on the block through Sc,n* is the unit normal
vector pointing outwards of V* and the 3 x 6 matrix R(x) is given by

1 00 0 xr3 —X9
(3.7) Rx)|0 10 —-z3 0 =z
0 0 1 ) —I1 0

To determine the distribution of the traction T"(x,w) on the contact sur-
face Sg , the dynamic contact problem between the rigid body and the so-
il must be solved. The displacement field in the soil medium a(x,w)
{1 (x,w), G2 (x,w), 43(x,w)}, x € V, must satisfy the Navier equations of mo-
tion, the condition of vanishing tractions on the free surface of the half-space
and the radiation conditions at infinity, [14]. At the soil-body interface SY, the
displacement field must satisfy the rigid body displacement

(3.8) a(x,w) = Rx)UW), xeS¥.

The displacements in the soil medium V' due to the tractions T“(x w) =
(TP (x,w), TR (x,w), TP (x,w )}, x € SY, acting at the interface x € SY, can be
expressed in the form

(39 axw) = [ Gy rwdsy),  xeV,  yesh,
s

in which G(x,y,w) is the 3 x 3 displacement Green’s function matrix where the
Jth column corresponds to the displacement vector at x due to a unit harmonic
force at y acting in the jth direction and n is the unit normal vector pointing
outwards of V. An integral equation approach results from selecting the point x
on the surface SY. Assuming in Eq. (3.9) that the displacement vector ti(x,w)
is known for x € Sg , from the rigid body motion (3.8) one gets

(310)  R(x)Uw) = / G(x,y,w) Ty, w)dS(y), x,yeSY
sg
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which corresponds to a Fredholm integral equation of the first kind for the unk-
nown traction T™(n,w) on the contact surface SY. Due to the linearity of the
problem, the solution of Eq. (3.10) can be written in the form

(3.11) T(x,w) = Hx,w)U(w), xeS8¥,

where FI(x,w) is the 3 x 6 matrix of contact tractions for unit rigid-body displa-
cements corresponding to each of the six degrees of freedom of the rigid body.
Similarly, the traction vector T™(x,w) on the contact surface SE can be expressed

in the form R R )
(3.12) T?(x,w) = H(x,w)U(w), x € SE,

in which the matrix of contact tractions ﬂ(x,w),x € SB, represents the effect
of backfill and, due to the local modelling, it is assumed that the tractions at
any point on the vertical side are related to the displacements only at the point
where the reaction is considered. In this approach, the matrix H(x w), X €
SC, is easili obtained from an analytical solution of a dynamic contact problem
between a rigid cylindrical inclusion and a soil medium under the cylindrical
plane-strain condition, [15]. It is noted that n = —n* and T?(x,w) = —T""(x).
Then, substitution from (3.11) and (3.12) into (3.6) gives

A

(3.13) Ps(w) = -K(w)U(w)
in which

314) Kw) = / RT(x)A(x,w)dS(x), xe€Sc=SYuUSE

is the 6 x 6 impedance matrix of the soil medium. Including the Eq. (3.13) in
the equation of motion (3.2) leads to the following equation of motion of the
block-soil system in the frequency domain:
(3.15) (K(w) — M) U(w) = P(w)

Let the machine-block-soil system posseses two orthogonal vertical planes of
symmetry and let the body frame be directed along the principal body axes, then
the inertia matrix is diagonal

(316> M =diag{m’mam’ ']117']227']33}7

where m is the total mass of the machine and block, and Ji1, Joo and Js3 are the
mass moment of inertia of the considered system with respect to the coordinate
axes. The solution of Eq. (3.15) is given by

A A

(3.17) U(w) = (K(w) - M) P(w).
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Finally, the U; components of the steady-state motion of the machine-
foundation system at the centre of mass are obtained from

(318) Uj(t) = Uojexp[i(wt—i-Ej)], i=12,,..,6,

where the real amplitudes of motion Up; and the phase angles E; are given by

1 A
A\ 2 A\2\2 o ImUj;
(3.19) Uo; = ((Rer) + (ImUj) ) 25 = arctanRer.

4. OPTIMIZATION PROCEDURE

The optimization problem formulated in Box 1 is a standard nonlinear pro-
gramming problem [16]. For efficient structural systems the approximate methods
are widely used [17, 18]. To obtain a minimum mass of machine foundation dyna-
mically interacting with soil, the sequential linear programming (SLP) is adopted
[16, 19, 20]. Linear approximation of non-linear functions is accomplished by re-
placing the nonlinear functions of vibration amplitudes and subsoil stresses with
their first-order Taylor series terms (Box. 2). Then this linearized problem is
solved using Simplex algorithm [16]. The finite difference method is adopted to
obtain the gradients of the objective function and behaviour constraints. In order
to control the stability and convergence of the algorithm, a set of move limits is
added to the constraints of the SLP problem [18, 20].

Box 2. Linearized optimization problem

Min W(D) = W(DP)+ < VIW(D?),AD? > ,

subject to: g;(D) = g;(D”)+ < V7g;(D¥),AD® > < gjreas ,

D, < D < D, ’

AD; < AD £ AD,,
where:
p is iteration number,
9;(D) = ¢;max(D), g;(D) = o(D),
D" is the design point about which linearization is performed,
AD are design changes,
and AD; and AD, are constants that represent move limits on AD.

5. NUMERICAL RESULTS

A rigid massive rectangular block 2B x 2L(B < L) resting on an inhomogene-
ous soil with depth-dependent properties and excited by unbalanced vertical and
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horizontal forces from a single-cylinder reciprocating engine is to be optimized.
The supporting medium consists of an independent backfill layer surrounding the
block to the height ZFE and a horizontal layer of constant thickness H L bonded
to an underlying half-space, Fig. 2. The backfill is characterized by the shear wave
velocity VS(B), Poisson’s ratio vy, density p, and hysteretic damping constants (ps
and (pp, for shear and compressional waves, respectively. The layer under the base

of block is characterized by a distribution of shear wave velocity VS(L)(z), Pois-
son’s ratio vy, density p; and hysteretic damping constants (15 and ¢y, for shear
and compressional waves, respectively. The underlying half-space is characteri-
zed by the shear wave velocity VS(H), Poisson’s ratio vo, density po and hysteretic
damping constants (2, and (o, for shear and compressional waves, respectively.
Two depth distributions of shear wave velocity in the layer are considered: (I)
constant shear wave velocity and (II) linearly varying shear wave velocity. It leads
to two velocity-depth functions for the medium under the base of the foundation
block that have been assumed in the paper. The first profile, appropriate for
pronounced layering, is described by piecewise continuous step-step function of
depth variable, and the second one is given in the form of continuous ramp-step
function of depth variable, that corresponds to bounded nonhomogeneity with
no pronounced layering, Fig. 2.

*

V “shear wave profile:
‘/VB (1) (H)
~ B ——= |y® B)
- backfill -, kp’ g8 ——— V(S V(s
PR -—-—/———— L) L)
(Iayer y 2 Sy s¢? | Vé ( V; \
‘ VH )
half-space S S

CR=VHnL(0)
S S
Fi1c. 2. Block-soil model and notation.

To determine the dynamic response of the machine-block system from
Egs. (3.17), (3.18) and (3.19), the impedance matrix of the soil medium K(w)
must be calculated. It is obtained from Eq. (3.14) if the 3 x 6 matrix of con-
tact tractions H(x,w), x € S¢, is known. The solution of the integral Eq. (3.10)
giving the matrix ﬂ(x, w), X € S]CV , in accordance with the Eq. (3.11) is accompli-
shed numerically by discretization into a set of simultaneous, complex, algebraic
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equations using the rectangular constant elements. The Green’s functions of a
layered half-space, calculated by the procedure described by Luco and APSEL
[21], have been used in the solution procedure. The matrix H(x, w), x € S§, is
obtained from closed-form expressions [5]. The complex-valued impedance matrix
of soil K(w) in the case of constraints imposed by a rigid rectangular body can
be written in the form

(kHlHl ) 0 0 ) 0 f{Ph@z 0
0 HoHy AO Ko, 0 0
- 0 0 Kyy 0 0 0
K(w) = N .
) 0 Koy, 0 Koo, 0 0
K@2H1 0 0 0 K@2@2 AO
|0 0 0 0 0  Kpr |

in which RHiHH K@i@“ R'Hiej = IA{@]‘Hi7 va and IA(TT are the horizontal,
rocking, coupling, vertical and torsional complex-valued impedance functions,
respectively. To give an insight into the dynamic properties of the soil models,
the vertical impedance function is widely presented. The function can be written
in the form

. (L) 2 .

Kyy = (VS (O)) plB(kvv + ZaOC'uv)
where ky, is the normalized vertical stiffness coefficient, c,, is the normalized
damping coefficient and ag = wB/ VS(L) (0) denotes the dimensionless frequency.
The non-dimensional stiffness and damping coefficients have been calculated for
the following data: ZE/B = 0; L/B=1,v1 =1y =033 (15 = ¢1p = 0.05;
Cs = Cop = 0.03; pp/py = 1.13; ag € [0.1,3]; HL/B € [2,4]; CR = Vi
VSEL)(O) € {1.0,1.50, 2.0, 2.5,3.0}; number of boundary elements 8 x 8 — 64. The
assumed values of contrast ratio CR control the jump in the step-step velocity-
depth profile and simultaneously, they control the gradient of the linear part of
the ramp-step velocity-depth profile. Furthermore, the assumed value of Poisson’s
ratio is typical for granular soils.

It is seen from Figures 3 and 4 that if the soil resembles a layer overlying a
half-space rather than a uniform half-space, the normalized vertical stiffness kyy
and damping c,, coefficients exhibit strong dependence on the shape of the shear
wave velocity profile in addition to dimensionless frequency ag. The variations
of kyy and ¢, with ag and H L/B for the first shear wave velocity profile are
fluctuating functions and the fluctuations grow with the increase of jump in the
piecewise constant profile due to increase of the contrast ratio CR. They are
the outcome of resonance phenomena in the pronounced layered medium. On the
contrary, the k,, and c,, coefficients are rather smooth functions of the considered
parameters for the second, continuous, piecewise linear velocity-depth profile.
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d)

F1G. 3. Normalized vertical stiffness and damping coefficients of a layered soil for shear wave
velocity profile (I); a) CR=1.0, b) CR = 1.50, ¢) CR = 2.0, d) CR = 2.5, e) CR = 3.0.

In general, the normalized vertical stiffness coefficient can be greater or lower
than the values predicted for a uniform half-space, and the normalized damping
coefficient may be considerably lower than that of the homogeneous half-space
depending on the shape of the shear velocity profile, the frequency of vibration,
the thickness of the layer overlying the half-space and the contrast between the
rigidity of the two materials constituting the inhomogeneous supporting medium.
Existence of the “zone of influence” (dynamic pressure bulb) is evident from the
Figs. 3 and 4. Below the depth of the “bulb”, the influence of the properties of the
supporting medium on the vertical impedance function at the point of reference
on the surface of the supporting medium disappear.

The variations of the dynamic stiffness and damping coefficients presented
in Figs. 3 and 4 for the vertical mode of vibration are observed to a larger or
smaller degree in all modes of vibration, but details of marked differences are not
addressed here.
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d

Fi16. 4. Normalized vertical stiffness and damping coefficients of a layered soil for shear wave
velocity profile (II); a) CR = 1.0, b) CR = 1.50, ¢) CR = 2.0, d) CR = 2.5, e) CR = 3.0.

It is well known that at relatively high frequencies, the motion of a rigid mas-
sive foundation is controlled by the static stiffnesses of the soil (limit of dynamic
stiffnesses at frequency tending to zero). However, at relatively low frequencies
encountered in practice the dynamic response of massive rigid foundation reflects
the characteristics of both the machine-block inertia and dynamic properties of
the supporting medium. It is clear that adequate modelling of the nature of the
soil profile is a crucial step in the dynamic analysis of the machine-block-soil
system.

To illustrate the effect of the variations of shear wave velocity profile on the
minimum mass optimum design of machine foundation block subjected to unba-
lanced forces of reciprocating machine, the optimal objective function has been
determined for several configurations of two particular velocity-depth functions of
soil under the block including piecewise constant step-step profile and continuous
ramp-step profile and additional effects of backfll.
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Two simple types of reciprocating machines mounted on the rectangular con-
crete blocks are considered. Let a machine with only one cylinder be mounted
vertically on a rigid foundation with counterbalancing. Assume that the line of
motion of the piston lies along the vertical axis passing through the center of
mass of the engine and the foundation. Then the foundation will undergo only
vertical vibration. The input data and limiting values of constraints for the opti-
mal design of the foundation to support the vertical single cylinder reciprocating
engine are given in Box 3. Values of minimum mass optimum design of block for
vertical mode of vibration are presented in Fig. 5.

2)

surface block embedded block

Fic. 5. Optimal objective function W [kg] versus thickness of the layer HL and shear wave
velocity ratio CR for vertical vibrations of block; a) shear wave velocity profile (I), b) shear
wave velocity profile (II).
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Box 3. Input data and limiting values of constraints for vertical vibrations

(1) machine data: (4) soil below the base of block:
mass of machine = 1400.0 kg, layer
total reciproacting mass Mg = 10.0 kg, shear modulus
crank length 7 = 0.08 m, G1(0) = 40000.0 kN/m?
length of connecting rod 1 = 0.3 Im, Poisson’s ratio v; = 0.33,
operating speed = 1200 rpm, density p1 = 1650.0 kg/m?,
F, = Mprw® coswt + Mg (r’w? /1) cos 2wt, hysteretic damping constants
C1s = (1p = 0.05,
underlying half-space
Poisson’s ratio vp = v,
(2) block data: density p2 = 1.13p;,
density of concrete block = 2400.0 kg/m?, hysteretic damping constants
height HB = 2.0 m, Gas = C2p = 0.03,

thickness of base slab HP = 0.5 m,
constant dimensions of top part of block:
YD =1.5m, XD = 2.5 m,
(5) limiting values of constraints:
vertical displacement amplitude

(3) backfill data: limit Af,,, = 30.0 x 107¢ m,
thickness of backfill layer ZE = 0.0 and 1.0 m, stresses in the soil limit
dynamic shear modulus Gy = 20000.0 kN/m? Ofeas = 150.0 kN/m?,
density pp = 1350.0 kg/m?, size limits: 2.5 m < D; <5.5m
hysteretic damping constants: 1.5< D2 <45 m.

Cos = Cop = 0.05,

In the next example, a single cylinder reciprocating engine is mounted ho-
rizontally and symmetrically on the rectangular rigid block and counterweights
are not installed. It means that the centre of the crank lies vertically above the
mass centre of the machine-block system and the plane of crank rotation lies in
the plane of symmetry of the system. In this case the foundation will undergo
vertical and coupled rocking and sliding oscillations. The input data and limiting
values of constraints for optimal design of the foundation to support the hori-
zontal single cylinder reciprocating engine are given in Box 4. The results of the
optimization process are shown in Fig. 6.

An inspection of the Figure 5 indicates that for vertically vibrating block
resting on a layered medium with discontinuous step-step velocity-depth function,
the minimum optimal mass increases with the increase of Jjump between two parts
of the profile but decreases with increasing values of the thickness of the layer
overlying the half-space. The global maximum of the objective function (the
“worst case”) exists for the contrast ratio CR = 3 and the layer thickness HL =
2.5 m. Then, the existence of very stiff material at a relatively shallow depth may
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Box 4. Input data and limiting values of constraints for coupled vibrations

(1) machine data: (4) soil below the base of block:
mass of machine = 1500.0 kg, layer
mass moment of inertia of the machine about shear modulus
an axis passing through its centre of mass G1(0) = 60000.0 kN/m?
= 2500 kgm?, Poisson’s ratio v, = 0.33,
total rotating mass Ma = 7.25 kg, density p1 = 1650.0 kg/m?,
total mass due to piston and crank rod hysteretic damping constants

Mp =13.15 kg, C1s = C1p = 0.05,

length of connecting rod 1 = 0.45 m, underlying half-space
operating speed = 600 rpm {w = 207 rad/s), Poisson’s ratio v = v,
height of machine CG above the top density p2 = 1.13p1,
of the block = 0.3 m hysteretic damping constants
unbalanced forces (vertical and horizontal): C2s = (2p = 0.03,

F, = Marw? sin wt,
Fp=(Ma+ MB)rw2 coswt
+Mpg (r?w? /1) cos 2uwt,
(2) block data:
density of concrete block = 2400.0 kg/m?,
height HB = 1.5 m,
thickness of base slab HP = 0.5 m,
constant dimensions of top part of block:

YD=15m, XD =15m, (5) limiting values of constraints:
total vertical displacement
(3) backfill data: amplitude limit
thickness of backfill layer Yo = 60.0 x 1076 m,
ZF =0.0 and 1.0 m, total horizontal displacement
dynamic shear modulus amplitude limit
Gp = 30000.0 kN/m?, Al =90.0x107¢ m,
density pp == 1350.0 kg/m?, stress in the soil limit
Poisson’s ratio = 0.25, Ofeas = 150.0 kN/m?
hysteretic damping constants: size limits: 1.5 m €< D7 < 3.5 m,
Cos = Cop = 0.05, 15m < Dy <35m.

drastically influence the optimal design. In the case of continuous ramp-step
velocity-depth profile the optimum mass trends displayed a different pattern.
Small increase is observed for relatively low values of contrast ratio C R depending
on the layer thickness H L, when the effect of the reduction of radiation damping
is greater than the effect of increase of the stiffness. However, the increase of
gradient of the linear part of the velocity-depth function increases the vertical
stiffness leading finally to the reduction of optimal mass that reaches its global
minimum at the same point as the global maximum for the first velocity-depth
profile. If the block is surrounded by backfill, the values of total stiffness and
damping coefficients of the supporting medium substantially increase. It reduces
the values of the minimum optimal mass and the sensitivity with respect to
variations in the velocity-depth profiles.
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surface block embedded block

FiG. 6. Optimal objective function W [kg] versus thickness of the layer HL and shear wave
velocity ratio CR for coupled vibrations of block; a) shear wave velocity profile (I), b) shear
wave velocity profile (II).

In the case of complex dynamic loading of block resting on a pronounced lay-
ered medium (first velocity-depth profile), the minimum optimal mass displays
rather small variations, its decreasing or increasing depend on the values of the
layer thickness H L and the contrast ratio CR. For the second velocity-depth pro-
file, the minimum optimal mass decreases monotonically with increasing values
of contrast ratio CR but increases monotonically with increasing values of the
thickness of the layer HL. It reaches the global minimum for the contrast ratio
CR = 3 and the layer thickness HL = 2.5 m. Figure 6 serves also to illustrate
the main effects of the embedment of the block on minimum optimal mass. Si-
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gnificant reductions of the minimum optimal mass are observed for all considered
combinations of velocity-depth profiles. Also, it is not sensitive to changes in the
values of parameters HL and CR. It is seen from the Figs. 5 and 6 that the effect
of embedding of the block is greater for the coupled mode of vibration than for
the vertical mode of vibration, agreeing qualitatively with physical intuition.

6. CONCLUDING REMARKS

Soil-block interaction has a considerable influence on the dynamic response
of massive rigid machine foundation supported by soil deposits. Computational
difficulties are primary due to the three-dimensional, semi-infinite nature of the
soil medium and variation of the soil properties with depth. Often it is not easy to
correlate the variations as found by measurements to those of idealized systems.
The adopted velocity-depth profiles in the form of piecewise continuous step-
step function and continuous ramp-step function make possible a realistic and
economical assessment of sensitivity of minimum mass optimal design with re-
spect to changes in preassigned parameters defining depth-dependent properties
of strongly as well as weakly layered media with bounded nonhomogeneity.

The sensitivity analysis of minimum mass optimum design of block based
on the reoptimization displays trends that depend on the form of velocity-depth
profile, the mode of vibration and the depth of embedment.

The presented results can be used to predict revised optimum designs, asso-
ciated with specified changes of parameters defining the velocity-depth profile.
Furthermore, they provide a useful basis for clarifying the role of uncertainties in
modelling of the dynamic properties of the semi-infinite soil deposits.
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