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A nonlinear integro-differential flutter equation of a thin airfoil placed in an incompressible
flow is solved by two different methods. The first method involves the center-manifold reduction
and gives the asymptotic limit cycle amplitude and frequency in terms of power series expan-
sions. The second method replaces the integro-differential equation by an approximate set of
first-order ordinary differential equations which are solved by using bifurcation and continu-
ation software package. A comparison of these two methods shows that the domain of a good
agreement between them varies significantly depending on the parameters of the problem.

1. INTRODUCTION

Self-excited flutter oscillations of nonlinear aircraft structure immersed in
subsonic flow are governed by an integro-differential equation. This is due to the
influence of the history of motion on unsteady aerodynamic forces and causes
some difficulty, since the theory of integro-differential equations provides much
less tools to solve that problem than that of ordinary differential equations. It is
well known from the theory of dynamical systems [1] that the loss of stability of
the steady solution, such as a horizontal flight of an aircraft, is described by the
mechanism called the Hopf bifurcation. Asymptotically, self-excited oscillations
tend to a limit cycle which is always two-dimensional. In [2] a new algorithm was
presented for calculation of the limit cycle amplitude and frequency based on
center-manifold reduction [1] with application to integro-differential equations.
Some numerical examples were given in [3] and [4], compared mainly to the har-
monic balance method which is an approximate method itself. This paper tries
to give more comparison in order to estimate applicability of the center-manifold
reduction to aeroelastic systems. The most widely used approach for such a ca-
se is to perform a direct numerical integration, and then compare the results
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with those of the investigated method. Unfortunately, this cannot be done for
most of the aeroelastic systems, because of lack of necessary information. The
integro-differential flutter equation contains the convolution integral involving
the impulsive response matrix function which is unknown, except for the sim-
plest case of two-dimensional airfoil in incompressible flow. In general, impulsive
response function can be calculated as an inverse Fourier transform of the transfer
function for harmonic motion. However, the transfer function is calculated only
numerically and only for a finite frequency range. Therefore, any method based
on impulsive response function cannot be used. The only approach is to replace
the integro-differential equation by an approximate set of ordinary differential
equations by using a rational approximation of the transfer function, which gives
the exponential approximation for the impulsive response function. This method
is applied thereunder for an aeroelastic system composed of a thin airfoil two
degrees of freedom, despite the fact that the impulsive response function for this
system is known.

2. TWO-DIMENSIONAL AIRFOIL

The geometry of a two-dimensional thin airfoil is shown in Fig. 1.

b b

FiG. 1. Two-dimensional thin airfoil.

The motion of an airfoil is described by two-dimensional vector {u(t)} com-
posed of physical coordinates being functions of time ¢:

(2.1) fu()} - { o } ,
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where h(t) and a(t) denote the plunge displacement and the pitch angle, respec-
tively. Both springs are assumed to be nonlinear and produce cubic restoring
forces I, and I, in the plunge and pitch degree of freedom, respectively:

Fy, = Kp(h+ cph®),
(2.2)
Fy = Ko(a + cp0?),

where K, and K, are linear stiffness coefficients while cp and ¢, are known
constants. The flutter equation written in physical coordinates is:

Mg} + [Bul{a} + [K){u} + {k(w)} = {1{"}

where [M] and [K] are mass and stiffness matrices, respectively:

[M]:{Tsa _Ifa} [K]:[é(h ?(QJ’

with m, S,, and I, being the mass of an airfoil, its static and inertia moments
about the elastic axis (per unit span), respectively. The matrix [B,] is the viscous
damping matrix. The nonlinear term {Fu(u)} is composed of nonlinear parts of
Egs. (2.2); and (2.2),.

For an arbitrary motion, the vector of unsteady aerodynamic forces is given
by a convolution integral:

)22 o fofes o))

where U is the flow velocity, b is the semi-chord, and elements of the matrix
[Gu(—7)] are response functions corresponding to the impulsive changes of phy-
sical coordinates. For a thin airfoil in a two-dimensional incompressible flow, these
functions can be expressed in terms of well-known Wagner function [5]:

e Tdx

"s 0/ 22 (o) = Kx(2))2 + w2(Io(z) + [1(2))?)’

(2.3)

where Ko(z), Ki(x), Io(z), and I1(z) are modified Bessel functions of order 0
and 1.

It is convenient to introduce modal coordinates since further calculations are
considerably simplified. In the absence of aerodynamic and damping forces and
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for linear springs, the natural frequencies w; and modes {¢;} (j = 1,2) can be
calculated from the eigenvalue problem:

(2.4) W M{p;} = Kl{g;}-
The vector {¢(t)} of modal coordinates is defined by the relation:
(2.5) {u(®)} = [2{q(1)},

where the square matrix [®] is composed of eigenvectors of the eigenproblem
(2.4):

(2.6) @]~ @1} @al.
The flutter equation written in modal coordinates is:

(2.7) {d(®)} + Bul{a()} + Kul{a()} + [@]"{k(0)} = {4},

where {fa} is the vector of generahzed unsteady aerodynamic forces given by

28) =22 (16, {a(e+30)}ar

and the remaining matrices are given by:
[Gy(—7)] = [(ﬁlqw[Gu(_T)][@]a
[Bw] = [Q]T[Bu][é]:

The nonlinear term is written as:

KhCh( ( )(h + ( ) )3

(1)

{k(@)} =lp1 ol
e Kaco (wz q1 + <p( )(12)

where <p§-i) denotes the i-th component of the eigenvector {y;}. At the flutter
velocity Uy the Hopf bifurcation occurs and the limit cycle oscillations are deter-
mined by the oscillatory branch of bifurcating solutions of Eq. (2.7) [1].

3. CENTER-MAIFOLD REDUCTION

The main advantage of using center-manifold reduction is a small number of
variables describing asymptotic motion. The limit cycle oscillations of nonlinear
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flutter, which is the Hopf bifurcation, are described by only two variables. Al-
though the vector {¢(¢)} is finite-dimensional, the problem is really of infinite
dimensions, since the space of initial conditions is an infinite functional space.
This is due to the influence of the history of motion expressed in Eq. (2.8) by
the convolution integral with infinite delay. This also causes some mathematical
difficulties pointed out in [6]. Consequently, the nonlinear flutter problem has to
be reformulated and results in the generalized flutter equation [2]:

(3.1) d{z:(©)}

G = L)} + Riz()},

q(t)
{2
‘ q(?)

is the vector of new variables, and

{z:(©)} = {z(t + ©)}.

The operator £ acting on a continuous vector-function {¢(©)} from the interval
(—00,0] is given by
He(0)}

—_— for — 0 <0
1o or oo < U,

where

L{p(©)} = 9
DO} + [ [G(-nU){p(r)}dr, for &0,

and the nonlinear term is
0, for —o00<© <0,
{f(z:(0))}, for ©® =0.

The remaining matrices are following:

R{z4(0)} = {

D] = . I ,
| -K, 0
_ O 0
G_ 7[] — ............. ,
G(-7:0)] P Jea(-4)] ¢ o
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0
{f(x£(0))} = { ............ }’
—[2]"{k(@)}
The classical flutter equation is obtained from Eq. (3.1) by setting © = 0. At
the bifurcation point (U = Up), the operator £ has a pure imaginary pair of
eigenvalues +iwg and the corresponding eigenvectors span a two-dimensional li-
near subspace E; which is tangent to the two-dimensional center-manifold which

in turn contains an asymptotic motion. The idea of center-manifold reduction
consists in splitting the vector {x;(©)} into two parts

{z(©)} = {v(21,22,©)} + {w(t, ©)}

in such way, that while the vector {x;(©)} remains all the time on the center-
manifold, the vector {v(z1, 22,©)} belongs all the time to the subspace E. and
depends only on two variables z;(t) and z2(t) being functions of time. Both vec-
tors must be “orthogonal” in a certain sense, and obtaining the relation between
them is the essence of the method. The algorithm of center-manifold reduction,
described in details in [2], provides the method of deriving the first-order or-
dinary differential equation describing the limit cycle oscillation in terms of a
multi-variable power series with respect to new variables z; and zg:

Z'l . . 2] L m
(32) { 22 } - [Dl(u‘oa U)] { 2z } + Z ;j' [D,lL(U)] {Z }7
n>2
where the matrices [D,(U)}(n > 2) are composed of known polynomials with
respect to the velocity U, and the first matrix is

o [+ PO 0
[D(wo, U)] = [ ’ 0 —iwg + P(U) ]’

where P(U) is also the known polynomial of U (P is a complex conjugate of ).

It is worth noting that the method of center-manifold reduction does not
require the explicit knowledge of impulsive response matrix but only its Fourier
transform — called aerodynamic transfer matrix — for different values of the fre-
quency w:

o
2

iwb

A (iw; U)] = / (G (r))e T 7dr.
0

Contrary to the response matrix, there are many numerical methods available for
calculating the transfer matrix which corresponds to the harmonic motion.
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Since Eq. (3.2) is an ordinary differential equation, it can be easily trans-
formed to the so-called Poincaré normal form [7] by introducing new variables
{C(t)} related to {z()} by the near-identity transformation

() = (¢} + 3 ﬁ[HHJ{c“(t)}.
pz2

Calculation of elements of matrices [H,| is aimed at making as many coefficients
(D] in Eq. (3.2) equal to zero as possible. The resulting normal form for the
Hopf bifurcation has the phase-shift symmetry, and in polar coordinates

G=rt)et, ¢ =C

can be written as:

dr_ r OOE a;(U)r¥
dt — —~ ’
7=0
(3.3)
do ad o;
E = wq + E bJ(U)T‘ ‘],

j=0

where all functions a;(U) and b;(U)are real and have the form of power series
expansions with respect to U. In practice, calculations are implemented up to
some finite order j < n. Therefore, the amplitude r g of the limit cycle oscillations
satisfies an algebraic equation obtained from Eq. (3.3)1 by setting r = 0:

(3.4) rg Y a;j({U)ry = 0.
j=0

For any given U, the left-hand side of Eq. (3.4) is of the form of polynomial with
respect to ry. Hence all possible limit cycle amplitudes are determined by the
real positive roots of this polynomial. Since limit cycle oscillations ¢; = (y(t) on
the center-manifold are pure harmonic [1]:

(= ryert,
then for each amplitude r;; the corresponding frequency wy is calculated from

n
(3.5) wir =wo + > bj(U)rH.
j=0

The sequence of transformations

rmen = {0} = {2(0)} = {2(0)} = {q(t)} — {u(t)}
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gives finally the limit cycle oscillations of physical variables. Note that due to the
nonlinearity of some of them, the resulting oscillations are no more harmonic in
time. Moreover, the use of infinite power series results in asymptotic character
of Egs. (3.3) which may not converge. Nevertheless, it will be seen that the first
few terms of these equations give often a satisfactory result.

4. APPROXIMATE SET OF ORDINARY DIFFERENTIAL EQUATIONS

Two-dimensional thin airfoil is the only case when the response matrix can
be expressed analytically in terms of the Wagner function (2.3). This gives the
following expression for the unsteady aerodynamic forces (2.8):

@) {fa) = —mpl% <[P01{q}+§[m{q}+ (z) Pt

b dr T2

U tg =
+Q[P3] /d—(/)g—g—i{q(t —7)}dr + / < b ) {g(t —7)}dr

0

Since only an asymptotic motion is considered, it is assumed that all terms arising
from initial conditions are damped out, and aerodynamic forces do not depend
on time explicitly. The matrices [P;](i = 0,1,...,4) depend on the eigenmodes,
location of the elastic axis 7,, and the initial values of Wagner function ¢(0) and

4p(0)

dr
The nonlinear integro-differential flutter equation (2.7) can be replaced by

an approximate set of first-order ordinary differential equations, if the Wagner
function (2.3) is approximated by the function given by JONES (8]

(4.2) O(t) =1 —aje 7 —age 7,

where a; = 0.165, as = 0.335, e; = 0.0455, and ey = 0.3. After introducing the
vector of new vanables.

wny = 24

where:

{a®}={a®}, A} ={a®}
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t

fwalt)} = (A1) [ e gt — r)}ar, 6~ 1,2),

0
[As] = [Pa]ase; + [Pyfase?, (i
the flutter equation (2.7) takes the form:

[Cs] <l“]

1,2),

U{
b

U

>2 +[Cy) (—b)g) {y@} +{v@)},

(43) {0} = ([COJ +(c] .

where dependence on the velocity is expressed explicitly as a polynomial of the
third degree and the matrices composed of numbers are given by:

[ 0 (1] 0 0]
~[D]"'[K,] ~[DI7'B,] 0 0
[Co] =
[A4] 0 00
i [As] 0 0 0 |
(0 0 0 0
1 0 —p[D]7 Py 0 0
(Gl =14 0 —e[I] 0
|0 0 0 —eo[T] |
[ 0 0 00
_ | —PD}I[Pg] 0 0 0
[Caf = 0 00 0]/
0 000
[0 0 0 0
_ |0 0 —p[D]7!" —pD]!
[Cal = 0 0 0 0
[0 0 0 0
The nonlinear term is given by
T{k(q1)}
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The remaining matrices are:

D] = (1] + 5P,  p=mpb",

[Po] = [®]7 ([Bs](1 — a1 — az) + [Bal(are1 + aze2)) (2],
[P1] = [®)7 ([Ba] + [Ba](1 — a1 — a2)) [®],

P = [B7[B1[@], [Ps] = [®"[Bsl[®], [Pa] = [3]"[Bd][®],
Bl 1" } Ba- | 1 }
B1 = 1 5 B2 = 1 ’
—Tq '8— -+ Ig 0 '2' — Tq
0 9 2 1 - qu
[B?’]:{O —1—2;ra]’ [Ba = 1 -2z, QIg—%]'

The matrix [®) is a modified eigenmode matrix (2.6):

(@] =7 : @,

containing nondimensional plunge displacements:
— h;/b .
{@j}:{ i/ } G -1,
j

where b is the semichord of an airfoil. Upon solving the Eq. (4.3), the sequence
of transformations

{y(®)} — {g(®)} — {u(t)}

gives the limit cycle oscillations of physical variables.

5. RESULTS

The values (per unit span) of the following basic parameters of the system
were constant during calculations: b = 0.1 m, m = 3.313 kg/m. The values of the
remaining parameters were changed. All results correspond to zero damping.

The method of center-manifold reduction gives a sequence of solutions de-
pending on the number of terms n retained in Eqgs. (3.4) and (3.5). The only
way to estimate convergence of the series is to calculate and compare several
consecutive solutions for n = 1,2, ..., up to the desired value. Since the motion
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of an airfoil is not necessarily harmonic in time, the limit cycle amplitudes were
calculated as maximum absolute values of the plunge and pitch displacements
during one period. The method of center-manifold reduction was applied to both
the integro-differential equation (3.1) (identified in figures as “IDE") and the or-
dinary differential equation (4.3) (identified in figures as “ODE”). In general, all
results of calculations fall into two groups. The first group contains solutions cor-
responding to rather fast convergence of the series of Egs. (3.3) in a wide range of
the velocity (at least as only six terms are considered). A sample of these results
is shown in Figs. 2, 3 and 4 as functions of nondimensional velocity U/Uy. The
second group contains solutions revealing rather poor convergence, covering at
most 5% of the velocity changes. A sample of such results is shown in Figs. 7, 8
and 9.
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F1G6. 2. Limit cycle amplitude in plunge. z, = 0, S, = —0.025 kg, Io = 0.043 kgm,

Ky = 2160 N/m®, Ko = 39 N, ¢, = 10000, cq = 100.

The set of ordinary differential equations (4.3) was solved by using the conti-
nuation and bifurcation software AUTO97 (available at ftp: //ftp.cs.concordia.ca/
pub/doedel/auto). This very useful free software gives all desired limit cycle perio-
dic solutions for different values of the velocity (identified in figures as “AUTO”).

A comparison of the results was performed in two steps. First, the results
given by the AUTO97 software applied to the approximate set of ordinary diffe-
rential equations were compared to those of center-manifold reduction of the same
set of equations (Figs. 6 and 10). The three-term center-manifold approximation
was taken in this case. It can be seen that the agreement is very good in the
velocity range where there is a good convergence of the series (3.3). Unfortunate-
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Fic. 3. Limit cycle amplitude in pitch zo, = 0, Sa = —0.025 kg, Io = 0.043 kgm,
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F1c. 4. Limit cycle frequency. zo = 0, So = —0.025 kg, Io = 0.043 kgm, K, = 2160 N/m?,
o = 39 N, cp == 10000, ca = 100.
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Fic. 5. Limit cycle amplitude. z, = 0, So = —0.025 kg, I, = 0.043 kgm, K, = 2160 N/m?
Ko =39 N, ¢, = 10000, co = 100.
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Fic. 6. Limit cycle amplitude. zo = 0, S = —0.025 kg, Ia = 0.043 kgm, K), = 2160 N/m?,
Ko =39 N, ¢y = 10000, cq = 100.
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Fig. 7. Limit cycle amplitude in plunge. zo = —0.02, So = --0 kg, Io = 0.042 kgm,
Ky = 4000 N/m?, Ko = 72 N, ¢, = 10000, co = 100.
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F16. 9. Limit cycle frequency. z, = —0.02, Sy = 0 kg, Io = 0.042 kgm, K = 4000 N/m?,
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Fig. 10. Limit cycle amplitude. z, = —0.02, S, = 0 kg, Io = 0.042 kgm, K} = 4000 N/m?,
Ko =72 N, cx = 10000, cq = 100.
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Fic. 11. Limit cycle amplitude. z, = —0.02, So = 0 kg, Io = 0.042 kgm, K, = 4000 N/m?,
Ko = T2 N, cp = 10000, co = 100.

ly, such range varies significantly (from 50% to 5%, according to plots presented
herein). At present, no correlation between the magnitude of the area of a good
agreement and physical parameters of the problem was found.

The second step consists of comparing results of the method of center-
manifold reduction applied to the integro-differential equation (Eq. (3.1)) and
the approximate set of ordinary differential equations (Eq. (4.3)) (Figs. 6 and
11). Essentially, this comparison gives an error caused by the Jones approxima-
tion (Eq. (4.2)) of Wagner function (Eq. (2.3)) which in the present case seems
to be negligible.

6. CONCLUSIONS

Although the method of center-manifold reduction gives final results in a form
of simple power series of Egs. (3.3), the way of calculating its coefficients is rather
complex and based on purely numerical procedure. Therefore, any evaluation of
the method has also relay on numerical results. This is not a comfortable situation
since no general conclusions can be drawn. Nevertheless, if there is a numerical
convergence of the series observed in some interval of the velocity, it can be
expected that such results are satisfactory within this interval. From that point
of view Figs. 2 — 4 and 7 - 9 help to estimate easily the applicability of the method
of center-manifold reduction which is additionally verified by the comparison with
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other method, as shown in Figs. 5 and 10. In both cases agreement is very good
in the estimated range of applicability. The problem is that while in the case of
Fig. 5 the method can be considered to be a practical tool for nonlinear flutter
calculations since the velocity can vary in a wide range of values (about the
results are almost of no practical importance because of the very small (less than
5%) usable range of velocity. This needs further investigations.
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