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The best methods available nowadays for modelling the propagation of very short (duration
less than 100 fs), ultrawideband electromagnetic signals in physical media are the asymptotic
ones. Numerical methods loose their traditional leadership due to their inability to handle rapid
oscillations of the propagating signal. Therefore it is important to create accurate asymptotic
models of propagation which can be used as a reference. In this paper a new description of
primary precursor in a dispersive Lorentz medium is given, based on uniform asymptotic theory
of evaluation of integrals and a new approximate solution to the distant saddle point equation.
The new representation of the signal in the medium is illustrated graphically and compared
with the Oughstun-Sherman representation.

1. INTRODUCTION

When a static electric field E' is applied to a medium, it affects electric charges
associated with microscopic particles constituting the medium. First, the external
field modifies the charge distribution in every molecule and leads to the creation
of microscopic dipole moments in the medium. Second, if particles have constant
dipole moments, the applied field tends to reorder their initial distribution. On
spatial averaging of the dipole moments over microscopically large, and macro-
scopically small volumes, the polarization P is obtained, which is an averaged
dipole moment per unit volume. Assuming that the external field E is not very
large, the medium is isotropic and ferroelectrics are excluded from the considera-
tion, the relation between P and F is linear, i.e. P = yE, where x is the medium
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susceptibility. The dielectric displacement D, defined as D = E + 47 P, is also
linearly dependent on E, i.e. D = eF, with ¢ = 1 + 47x being the medium
dielectric permittivity. In most media € is greater than 1. One important conse-
quence of the presence of the medium is that, in accordance with the equation
V- E = 4mp/e, the same charge distribution p excites the electric field smaller in
the medium as compared to the vacuum by the factor 1/e.

If the external electric field is not constant, but is rapidly varying in time,
no such simple relation between P and E, and consequently between D and F,
exists. The reason is that the motion of molecules and ions lags behind the
variations of the electromagnetic field. As a result, D(t) and E(t) are related by

t
D(t) = ¢ / E(")fp(t —t') dt’, with suitable pulse-response function fp(t) [1].

—00
This means that both fields are not local in time and the former field depends
on the whole history of the latter field. This feature is characteristic of temporal
dispersion. If the external electric field varies harmonically in time with the
circular frequency w, then the integral relation simplifies to D) = éw)E(®),
where é(w) = €Ly, (fp) and Li,(fp) is the Laplace transform of fp. If w is
sufficiently low, it is customarily assumed that é(w) = €.

Evolution of an electromagnetic signal propagating in a Lorentz medium that
demonstrates both dispersive and absorptive properties have been analyzed in
detail in now classical works of SOMMERFELD [2] and BRILLOUIN [3]. Their
results were later collected in the monograph [4]. By examining the integral
representation of a pulsed signal in the medium, Sommerfeld revealed that the
front of the signal cannot propagate with a velocity exceeding the light velocity ¢
in vacuum. Next, Brillouin, equipped with now standard asymptotic techniques,
showed that after travelling a sufficient distance in the medium, the signal splits
into parts significantly differing in their properties. Those parts are the first and
second precursors, and the main signal. The behaviour of each precursor is closely
related to the location of corresponding saddle points in the integral describing
the signal dynamics in the medium. It was shown that to each precursor there
corresponds a pair of saddle points in the complex frequency plane, and that they
are symmetric with respect to the frequency imaginary axis. Location of these
points specifies the local frequency and attenuation of the precursor at a given
time instant and a space coordinate. The relation between these coordinates
and location of the corresponding saddle points is governed by the saddle point
equation (see [5]). No exact, closed-form solution to this equation is known;
instead, approximate solutions were found. Therefore, analytic formulas known
in the literature describe the local behavior of a precursor only in approximate
manner.
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Brillouin’s description of those signal components is relatively simple and thus
suitable for physical interpretation. Unfortunately, it breaks down at certain
values of the space-time coordinate, where the asymptotic apparatus used is
inadequate to describe properly the actual behaviour of the field. This defect was
removed by OUGHSTUN and SHERMAN [5 — 11]. With the help of contemporary
asymptotic methods they obtained the signal description that is valid for any
value of the space-time coordinate. The form of their description is much more
complicated than that Brillouin's one, and thus is not convenient for physical
interpretation of the result.

The signal components mentioned above are significantly different. In partic-
ular, the first precursor rapidly oscillates, while the second precursor is a slowly
varying field. Accordingly, their analysis requires different analytical techniques,
and their resulting mathematical description is also different. Therefore they can
be studied as independent field entities.

In non-stationary field propagation a fundamental issue is the velocity at
which the field propagates in the medium. In lossless media the group velocity
v9 = [dk(w)/dw]™! is a suitable quantity describing the velocity of a wave-packet
amplitude. This concept is no longer valid in a region of anomalous dispersion,
where v9 can be negative, zero or infinite [10]. More generally, in a medium
exhibiting absorption, i.e. when the wave number k(w) takes complex values for
real w, the concept of the group velocity breaks down [12]. Here, a fundamen-
tal difficulty arises because lossless, dispersive media are non-casual, and thus
unphysical [13]. In order to extend the possibility of physical interpretation of
signal propagation in lossy, dispersive media, OUGHSTUN and SHERMAN [10] ap-
proximated the actual signal components by waves with suitably chosen real or
imaginary frequencies and the same rate of attenuation. The velocity of propaga-
tion of those waves was then determined from v¥(w) = S(w)/u(w), where S(w) is
time-averaged magnitude of the Poynting vector, and u(w) is the time-averaged
energy density.

In this work we reconsider the evolution of the first precursor as it propagates
in the dispersive Lorentz medium. In [15] a new approximate solution to the
saddle point equation was obtained, which relates saddle point location in the
complex frequency plane and the space-time coordinate. For Brillouin choice of
the medium parameters, the approximation appeared to be very satisfactory in
a wide range of this coordinate. Here, we employ the result obtained in [15] to
obtain better approximation of the first precursor generated by initial tangent
hyperbolic modulated signal, than it would follow from using the results known so
far in the literature. At the onset of the precursor, where the above approximation
is less accurate, generalized Brillouin approximate solution to the saddle point
equation is used instead. Both approximations are combined into one formula,
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describing a smooth function of the space-time parameter. Bleistein-Handelsman
asymptotic technique rather than standard asymptotic non-uniform approach is
applied to handle properly the onset of the precursor.

2. INTEGRAL REPRESENTATION OF THE SIGNAL

Assume that the electromagnetic signal propagation occurs in a linear, ho-
mogeneous and isotropic medium whose dispersive properties are described by
the Lorentz model of resonance polarization. The complex index of refraction in
the medium is given by the following, frequency-dependent function

52 1/2
21) ) = (1 - m) ’

where b?> = 4wrNe?/m, N, e and m standing, respectively, for the number of
electrons per unit volume, electron charge and its mass, 4 is a damping constant
and wy is a characteristic frequency.

Any electromagnetic field in the medium satisfies the Maxwell equations

VxE(r,t)_;lz.aié;_’t_):O, VxH(r,t)—%aig;ﬂzo,
i
D(r,t) = / it —7)E(r,7)dr,  B(r,t) = pH(x,1),

where €(t) is a real function and u is a real constant (hereafter assumed to be
equal 1). By Fourier transforming the equations with respect to ¢ and assuming
that the fields depend on one spatial coordinate z only, we obtain the following
equations for transforms of the respected fields:

5 x H(z,w) = _iwe(w)

E(z,w), ixﬁ(z,w):z—wﬂ (z,w),

c c

where % is the unit vector directed along z-axis and e(w) = n?(w)/(c*p) is the
Fourier transform of ¢(¢). It then follows that Z, £ and H are mutually perpen-
dicular. Moreover, if £ is known then # is also known, and vice versa. It is
also true for the electromagnetic field components, which are the inverse Fourier
transforms of £ and H. Therefore, the knowledge of the electric (magnetic) field
is sufficient to determine the full electromagnetic field. To make the calculations
as simple as possible, it is advisable that the z (or y) axis be directed to coincide
with the electric or magnetic field.
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Suppose that the selected Cartesian component (say z-component) of one of
these fields in the plane z = 0 is given by

0 t<0
(2.2) A0,1) = { u(t) sin(wet) t >0,

where w, is a fixed carrier frequency. Assume also that A(z,0) =0 for z > 0. In
the theory of partial differential equations the problem analyzed here is referred
to as a mixed problem.

We specify the function u(t) to be described by a hyperbolic tangent function,
ie.

e 0= 8 150

With this specification the rate of impulse growth can be controlled with proper
selection of the parameter 8 > 0.

It was shown in [14] that continuation of the signal (2.2) to arbitrary z > 0
is given by

24) Azt = % Re {1 700[%3 <_i(w2_5WC)> . ! wc} LE8(,0) dw} .

ja— 00

Here, the complex phase function ¢(w, ) is defined by

(2.5) H(w,0) =i g [k(w)z — wt] = iw[n(w) - 6],
B(z) is the beta function defined by the psi function as
1 z+1 T
26) B@) =3 [ (5) -4 (3)]
and
ct

is a dimensionless parameter that characterizes a space-time point (z, ¢) in the
field. The contour C is the line w = ' + 7a, a being a constant greater than the
abscissa of absolute convergence for the function in square brackets in (2.4), and
w' ranges from negative to positive infinity.

The integral (2.4) represents the exact solution to the Maxwell equations
in the dispersive medium with initial-boundary condition given by (2.21). It
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provides no direct information on the physical structure of the signal nor its
form as it propagates in the dispersive medium. One of possible approaches to
study the dynamics of the signal is to evaluate the integral numerically. In the
case at hand such an approach is not effective, owing to rapid oscillations of the
integrand. Instead, a different approach is used, which is based on methods of
asymptotic evaluation of integrals.

In his monograph [4] BRILLOUIN applied the method of steepest descents to
evaluate asymptotically the integral (2.4) for large values of the phase function in
the integrand. He revealed three components into which the propagating signal
deforms: the first precursor, the second precursor and the main signal. The
precursors are contributions of two pairs of saddle points in the complex frequency
plane, symmetrically located with respect to the frequency imaginary axis. As
the front of the signal departs from the plane z = 0, the saddle points change
their location in the frequency plane. The equation describing the location of
both pairs of saddle points follows from the requirement that the phase function
(2.5) is stationary at those points. Hence this equation can be formulated as [4]

(2.8) n(w) + wn'(w) — 0 = 0,

or, when n(w) is eliminated from the above equation, as [5]

2
b?w(w + i6)

9. 2 w29 Rt S i
(2.9) w —wi + 25w+w2—w§+2i6w

= 0%(w? — w? 4 2idw)(w? — wi + 2idw),

where w? = w2 + b?. By solving approximately the Eq. (2.8) and applying the
steepest descents method, Brillouin revealed the forms of both precursors in the
medium.

In this paper we confine our interest to the first precursor only. Brillouin’s
solution corresponding to this precursor suffers from two shortcomings. First,
his approximate solution of the saddle point Eq. (2.8) is valid only for § ~ 1,
i.e. for frequencies tending to infinity. Second, it is at infinity that the saddle
points change their order to infinite one, in which case the saddle point method
becomes invalid. ,

In their recent works Oughstun and Sherman improved Brillouin’s results.
They found a different approximation to the saddle point Eq. (2.8) which provides
good accuracy in the whole interval of § variation. They also employed modern
asymptotic techniques, that enable asymptotic evaluation of integrals with saddle
points of changing order. Comparison of Brillouin’s and Oughstun-Sherman’s
results can be found in [5, 11] (see also [15]).
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In [15] we offered an approximate solution to the saddle point equation which
is different from both Brillouin’s and Oughstun-Sherman’s results. For Brillouin’s
choice of medium parameters our approximation appeared to be superior over
those results in a wide range of § variation, except for very low values of 8, i.e.
for & ~ 1.3 and below. These low values are important if the front of the first
precursor is examined. For this reason, for small values of 8 we apply a different
approximate solution to the saddle point equation, which can be viewed as a
generalized Brillouin’s approximation. We combine both approximations into
one formula which is described by a smooth function of varying in the range
(1,00). This hybrid approximation is constructed in the following section.

3. APPROXIMATE SOLUTION TO THE SADDLE POINT EQUATION

In [15] a new approximate formula was found that describes the location of
saddle points of the integral (2.4) in the complex frequency plane as a func-
tion of the space-time parameter 6. It applies to the case of Lorentz medium
wherein the index of refraction is given by (2.1). For the distant saddle points
the approximation reads

, b?
w+(a9) = —Z(5+ \/wg - (52 el n_Q_—l,
(3.1)
~(0) = (" = _is ) _ 5 b2
w (0)———(&) ) = —10 — wO— —mr_—l.

where n is given by

(3.2) n:g—\/$<§-—20>—92,

with

1 2-1/3
(3.3) gzZﬁE\‘(u—}-x/H)l/?’ [(u+\/u2_u3)2/3+v] - 2c,

(3.4) u = 2¢° — T2ace + 27a0?,

(3.5) v = 22/3(c? ~ 12qe).
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The constant coefficients are given by

z5b2 15b2 3b2 +4(wd - 6H)]| 1
(3.6) a= 10y w 8(w? — 62)3/2 b2’

\/w1 52

6 2 o f

(37) C=—2\/—;;‘———62"b—2-<wg—52—7,(5 w%—52),
F—

and

2 _ 52 s [ 2 52
(3.8) I Zf s
The expression on the right-hand side of (3.2) is an approximation of the index
of refraction n(w) as given by (2.1).

The formulas (3.1) through (3.8) yield good approximation for the location
of the distant saddle points for § > 1.3. For smaller values of § we can find an
approximation which is a generalization of Brillouin’s result. On expanding the
left-hand side of the Eq. (2.4) into negative powers of w we obtain

b2 2ib%6 3 1
3.9 14 s~ —— 2[b? + 4(wi — 40 <—> = 4.
(3.9) +53 w3+84b[ + 4(w} )+ 0 =
Here, the expansion is terminated at the term O(w™*); with larger number of
terms included the accuracy of the approximation deteriorates at § ~ 1.1 and
higher (still Brillouin’s choice of the media parameters is assumed).

Inverting of this series leads to the formula

b2(1 +36) + 12w¢(0 — 1)
4v2bv/0 - 1
which describes the location of the saddle point in the right w half-plane. Corre-
sponding location of the saddle point in the left half-plane is given by —w*. It is

seen that for @ ~ 1 this formula passes into Brillouin’s approximation

(3.10) wp(f) = —2i6 +

+00-1),

Now we combine the approximations given by (3.1) and (3.10) into one formula:
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(312)  wsp(8) = w*(0) [H(g _1.0) _ Sin(0 = 1.08) p(6 - 1.08)}

2 p(0)
sign(1.08 — 0) p(1.08 — 0)]
0) |H(1.08 - 6) —
+up(0) [ H(1.08 - 9) - Y20 )
where H(z) is a unit-step function,
(3.13) p(z) = g(z +0.29)g(z — 0.29),
and
1
T2
(3.14) glz)={ ¢ > >0,
0, z <0.

The factors in square brackets provide smooth transition between two approxi-
mations. The numerical parameters were optimized for best accuracy of the
resulting approximation. Graphical presentation of this approximation is given
in Fig. 1.

2.5-10% 1

17 |

1.5-10Y¢

Fic. 1. a) Re(w) versus 8 for small values of 8. E — exact values, B — Brillouin’s approxima-
tion, OS — Oughstun-Sherman’s approximation, N — approximation based on Eq. (3.1), B-N
— combined approximation based on Eq. (3.12).
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FIG. 1. b) Im(w) versus 6 for small values of 6. The legend as in Fig. 1. b).

4. ASYMPTOTIC REPRESENTATION FOR THE FIRST PRECURSOR

For |w| sufficiently large the function n(w) can be expanded in a convergent
Laurent series and, consequently, the function 1(w,8) = ¢(w,8)/(iz/c) can be
represented by the series

(4.1) P(w,0) = —[w(@-1) Z anw™ ",

with properly determined a,.

From this representation it is easily seen that as 6 — 11, not only the first
derivative of 1 vanishes for w — oo, but also all higher derivatives do. More-
over, then both distant saddle points tend to infinity. We can conclude that as
6 — 1% the distant saddle points meet at infinity and at the same time their
order changes from 1 to infinity. In these circumstances the method of steepest
descents is invalid and more advanced asymptotic technique must be used to con-
struct the asymptotic representation for the first precursor. A suitable approach
was proposed by BLEISTEIN and HANDELSMAN (16, 17], see also [11]. By apply-
ing their method to the integral (2.4) we find the following uniform asymptotic
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representation for the first precursor

(4.2) Ag(w, 9) =coly + 11,

valid for large values of the exponent in the integrand in (2.4). Here,

(4.3) Ii(X,0) = —€5(2ye™ )M 71 (M), §=0,1,

Jm(z) being the Bessel function of m-th order,

(4.4) A=Z, (8) = ~Rely[w(8), 0]} p(6) = ~i Im{y[w(0), ]},

49 w=gz { ﬁ%ﬁ FE () + mOEm
(i e () sl
TR B o [P U8 O

+< i 58 (2% +w(e)1+wc]> }

As before w(#) corresponds to the location of the distant saddle point in the
right w half-plane, corresponding to a particular value of #. The star stands for
complex conjugate.

5. NUMERICAL RESULTS

As shown in [15], for Brillouin choice of medium parameters the formulas
(3.1) yield very good approximation for the location of the distant saddle points
in the complex w-plane in a wide range of §. This approximation, however, fails
to hold for values of € close to 1. Figure 1 depicts a comparision of various
approximations for small values of 6.
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It is seen that for 6 slightly exceeding unity, the real parts of approximations
based on Eq. (3.1) and (3.12) are virtually undistinguishable from the exact
result. Their imaginary parts, however, exhibit observable deviations from the
exact result for 6 smaller than 1.3. For higher values of 8 they provide a very
good approximation to the exact result.

The approximation given by (3.12) was then utilized in (4.2) to obtain asymp-
totic representation of pulse dynamics in the Lorentz medium. Figure 2 and Fig. 3
show the first precursor as a function of 6, calculated for different values of B and
A. Its form is governed by (4.2) through (4.6). For 6 close to unity the argument
of the functions Ji4j, 7 = 0,1, is small and they can be approximated with a
power functions of their argument. It then follows that the precursor is a rapidly
oscillating, growing function (the frequency of oscillations is infinite when § — 1),
which is then exponentially attenuated with increasing 6. It can also be seen that
the front of this precursor travels with the velocity of light ¢ in the vacuum. The
detailed description of general behaviour of the first precursor can be found in
[11], Ch. 7.

In the present context one can see that changing the value of the parameter
B from 10'% s71 to 102 s~! does not affect the shape of the precursor, but
- proportionally changes its amplitude. Alternatively, the parameter X, which is
proportional to the distance traveled by the precursor, has an essential impact
on both the pulse shape and its decay. With growing distance, higher frequencies
in the frequency spectrum seem to be less attenuated than the lower ones.

These results, based on the approximation given by (3.12), can be compared
against those obtained from the Oughstun-Sherman’s approximation (see Fig. 4).
From Fig. 2 and Fig. 4 some differences in precursor dynamics, especially at
higher values of §, can be observed. They seemingly result from lower accuracy
of Oughstun-Sherman’s approximation at higher values of 6, as seen from Fig. 1.

6. CONCLUSIONS

The problem of electromagnetic plane wave propagation in the Lorentz
medium has been reconsidered. A new uniform asymptotic representation is
found for the first precursor which is more accurate than the approximations
known in the literature. The present result is based on the new approximate so-
lution to the saddle point equation, as found in [15]. The precursor representation
1s constructed with the help of BLEISTEIN and HANDELSMAN’S [17] asymptotic
method and is illustrated graphically for the Brillouin’s choice of the medium
parameters. Plots are obtained for different values of the space coordinate and
rate of growth in the initial pulse.
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In the literature, the Debye model and Drude model of dispersive media are

often used. The former is pertinent to polar liquids, and the latter applies to
media with conductivity. Both models follow from the Lorentz model [18] and
therefore the results of this paper apply also in this case. However, there is a
number of models of various media (see [1]) to which the approximations obtained
here cannot be directly applied.
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