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This paper describes the instrumentation and load testing of a three-span orthotropic steel
bridge in France. Strain gauges were attached to the underside of the orthotropic plate to
measure the dynamic response of the bridge to traffic loading. Two preweighed trucks were
driven across the bridge at different velocities to investigate the influence of truck speed on
the dynamic amplification of the bridge. A model suitable for the prediction of the dynamic
response of the bridge is described. This consists of an elaborate finite element model to
determine the natural frequencies and mode shapes of the bridge, and a dynamic model which
uses this information to determine the dynamic response. The results of the experimentation
are presented and the relationship between truck speed and dynamic amplification are shown.
Finally, the loads applied to the bridge by an instrumented truck driving over it are presented
and comparisons are made with the loads applied at the bridge approaches.

1. INTRODUCTION

Orthotropic steel deck bridges are characterised by the use of a longitudinally
stiffened steel plate for the deck structure. The principal advantage of this form
over a reinforced concrete slab is a reduction in the weight of the bridge. This be-
comes particularly important for long-span bridges and consequently orthotropic
steel decks are regularly the favoured structural form for the decks of the world’s
longest bridges.
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The word orthotropic is derived from orthogonal anisotropic and means that
the stiffness of the plate is different in the two orthogonal directions, namely the
longitudinal and transverse directions. When such bridges were first designed in
the 1930’s in Germany (HEINS and FIRMAGE, [3]), they were used as moveable
bridges as the weight of the bridge deck had to be less than that of the conven-
tional reinforced concrete slab. Since then, orthotropic steel decks have become
more widely used particularly in the deck construction of long span bridges, where
the self-weight of the bridge becomes an important problem in the design process.
As a result, the ratio of the live traffic loads to the dead weight of the bridge is
greater for orthotropic bridges and consequently, they are more susceptible to fa-
tigue damage from traffic loads. This paper examines the response of orthotropic
steel decks to both static and dynamic truck loads. A comparison of the dynamic
loads induced by an instrumented vehicle on a portion of road surface before the
bridge and on the bridge is also examined.

2. INSTRUMENTATION AND EXPERIMENTS

The bridge, which was instrumented, was an orthotropic steel deck, known
as Autreville bridge, located on the A31 motorway between Nancy and Metz, in
Eastern France. The bridge consists of three spans (74.5 m, 92.5 m and 64.75 m)
(Fig. 1). There are four lanes and two emergency lanes, which are carried by the
steel plate of approximately 30.5 m in width. It has longitudinal stiffeners, which
are trapezoidal in shape at 600 mm centres. The plate is supported every 4.62 m
by transverse cross-beams, which span between the two main I-beams (3.8 m in
height) of the bridge (Fig. 2). The instrumentation consists of strain gauges,
which were placed in the longitudinal direction on the bottom of the longitudinal
stiffeners (Figs. 3 and 4).

Fi1G. 1. Elevation of Autreville bridge.
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F1G. 2. Bridge structure.
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Fi1G. 3. Schematic of instrumented sections 2 and 3.

Two different experiments are described in this paper. The first consists
of comparing the dynamic response of the bridge to the passage of two different
truck configurations to that of the quasi-static response of the bridge. The second
series of tests consists of examining the bridge response to the passage of an
instrumented truck. The two truck configurations, which were used in the first
test, were a 2-axle rigid truck and a 5-axle semi-trailor. The axle weights and
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spacings for the two vehicles are given in Table 1. Both of the trucks were driven
across the bridge four times at each of the following velocities, 5, 10, 20, 30, 40,
50, 60 and 80 km/h, and the response of the bridge to each truck crossing was
recorded at both instrumented sections.

FiG. 4. Details of transverse cross-beams supporting the longitudinally stiffened plate and
instrumentation.

Table 1. Truck configurations for the static and dynamic tests.

No. Axle Weights (kN) Axle Spacings (m)
Axles

A | A2 A3 Ay As | AS12 | AS23 | AS3ss | ASss

Truck 1 2 55 | 129 4.8

Truck 2 5 48 | 87 | 64.7 | 64.7 | 64.7 | 3.5 3.4 1.38 1.38

The second set of experiments, which were conducted, were performed with
an instrumented vehicle. It was supplied by the Technical Research Centre of
Finland (VTT). The instrumented vehicle was a three-axle rigid vehicle, the
second and third axle being a tandem. Traditional steel springs are used in
all three-axles. There is a mechanical connection between the two axles on the
tandem, which means the axle masses are not distributed equally within the
tandem (55% and 45% of the tandem axle mass is carried by the first and second
axle respectively). The technical details of the instrumented vehicle are presented
in Table 2 (HUHTALA et al., [4]) and the exact wheel weights for the experiments
conducted on the Autreville bridge are illustrated in Table 3.
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Table 2. Technical details of the instrumented VIT truck.

Parameter Axlel | Axle 2 | Axle 3

Maximum Weight (kN) | 589 | 863 | 70.6

Axle Spacing (m) 4.2 1.2
Spring Stiffness (N/mm) 210 1600

Body Bounce Freq. (Hz) 2.5 3 3
Axle Hop Freq. (Hz) 11 10 10

Table 3. Wheel weights for the instrumented vehicle.

Axle 1 (kN) Axle 2 (kN) Axle 3 (kN)
L R Total L R Total L R Total

Axle Weight | 28.0 | 304 | 59.4 | 43.8 | 43.0 | 86.8 | 32.1 | 39.1 | 71.22

3. ORTHOTROPIC BRIDGE MODEL

A computer model was created to predict the dynamic response of the bridge
at the instrumented section. This involved using a commercial analysis package to
predict the natural frequencies and mode shapes of the bridge. This information
can then be used as the input for a dynamic analysis which will predict the bridge
response to a transient load history.

3.1. Modelling of bridge structure to find natural frequencies and mode shapes

Modelling of orthotropic bridges requires greater effort than that of more con-
ventional bridge types. As well as the complexities of the orthotropic behaviour,
the relative flexibility of the plate between transverse beams introduces addi-
tional complexities. A combined grillage and finite element model was created
using the structural analysis program STRAP (ATIR, [1]). This was analysed to
predict the natural frequencies and mode shapes of the bridge. This information
was then used in a dynamic model to predict the response of the bridge when
subjected to the moving truck loads.
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The choice of model type was arrived at by considering both the behaviour
of the bridge and the predictions required, namely the natural frequencies and
mode shapes. The longitudinal girders and transverse beams were modelled using
a three-dimensional array of beams, or a ‘3d grillage’. This approach was chosen
as it allowed direct modelling of the difference in location of the centroids of
these members. Rigid (or very stiff) vertical beams were used to connect the
longitudinal and transverse members at discrete locations. The orthotropic plate
was modelled using plate finite elements. Once again, these were located at
such a level that their centroids were coincident with the centroid of the plate.
Rigid vertical beams connected these finite elements to the transverse beams at
the appropriate locations. Figure 5(a) shows a view of the complete combined
grillage and finite element model while Fig. 5(b) shows a small portion of this
model indicating the important components. The specific issues relating to the
various components of the model are discussed in the following sections.

b)
/ Finite Element
i S N S S )
N‘\ Transverse Beam
Rigid Vertical Beams
Longijtudinal Girder

F1G. 5. (a) Combined grillage and finite element model; (b) Small portion of model.

3.2. Longitudinal girders

Although the depth of the girders is constant, the thickness of the bottom
flange varies along the span resulting in a varying moment of inertia and a cen-
troid of varying depth. To allow for this, each portion of the longitudinal girders
were modelled at the level of their centroids and connected by rigid vertical mem-
bers. The properties of the members in the model were derived from the web
and bottom flange of the girders. The orthotropic plate forms the top flange of
the girders and consequently, its stiffness was incorporated in the model by the
finite elements. The moment of inertia of the members representing the girders
was determined by considering the web and bottom flange bending about the
centroid of the combined web and bottom flange section. The torsional constant
was determined by adding the torsional constants of the rectangles of the web
and bottom flange. WEST [7] describes this method in detail. As the model is
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three-dimensional, it was necessary to assign the moment of inertia for transverse
bending of the girders. Although being very small compared to that for longitu-
dinal bending, it was considered important to determine this quantity accurately
as it could affect some of the higher mode shapes.

The top flange of the girder is idealised using finite elements (which are
capable of in-plane distortion). It was not necessary to consider shear lag as it is
automatically modelled. This is one of the distinct advantages of using a three-
dimensional model rather than attempting to estimate effective flange widths
which will inevitably be affected by the type of loading applied to the bridge.

3.8. Transverse beams

The transverse beams, which were spaced at between 3.82 m and 4.62 m apart,
-were modelled in a similar manner to the longitudinal girders. One exception was
that the beams have a top flange on which the orthotropic plate rests. The beams
were modelled at the level of their centroids which was above the centroid of the
longitudinal girders and below the centroid of the orthotropic plate. Consequently
two sets of rigid vertical beams were required, one to connect to the girders and
one to connect to the plate. The transverse beams run perpendicularly to the
span direction and were modelled accordingly. Skew transverse beams are located
at the two ends of the bridge. These were also modelled and connected to the
longitudinal girders and plate by rigid vertical members.

3.4. Orthotropic plate

The orthotropic plate is perhaps the most challenging part of the bridge to
model correctly. It was decided to use orthotropic finite elements to this end. The
plate on the bridge is ‘geometrically orthotropic’ as it is its geometry that gives it
different stiffnesses in the longitudinal and transverse directions. It is made of one
homogenous material, namely steel, which gives it the same material properties
in all directions. Most commercial finite element programs do not incorporate
elements which allow for modelling of this type of plate directly. Alternatively,
they use ‘materially orthotropic’ elements. These assume the same stiffness in
both orthogonal directions by adopting a single thickness for the plate. The
orthotropy is accounted for by allowing the specification of different moduli of
elasticity in the two directions. As the stiffness of the plate is a function of
the product of moment of inertia and modulus of elasticity, FI, by adjusting
the value of F in the two directions the difference in moments of inertia can be
allowed for.
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Since the main aim of this model was to determine the natural frequencies
of the bridge, it is important that the weight of the model should be accurate
as well as the stiffness. For this reason, the depth of the elements was chosen so
as to give the correct cross-sectional area of the plate (and hence correct weight)
and the modulus of elasticity in both the longitudinal and transverse directions
were adjusted to give the correct ET values (and hence correct stiffness). Further
information on this technique is given in O’'BRIEN and KEOGH {5].

In order to check the validity of the chosen technique for modelling the or-
thotropic plate, especially with regard to predicting its natural frequencies, a
small portion of plate was considered in isolation. A geometrically orthotropic
finite element model was generated using a three-dimensional assemblage of
isotropic elements for a 6 m square plate. Figure 6 shows a picture of a por-
tion of this model. The dimensions of this plate correspond to those of the actual
bridge. The plate was fixed against all translations and rotations at all of its
edges. A materially orthotropic finite element model of this plate was also anal-
ysed with the same boundary conditions. Comparisons were made between the
first five natural frequencies predicted by the two models. These are shown in
Table 4. The maximum deflection of the plate under the action of a 10 kN/m?
uniform load was also compared. This is also shown in the table.

Fic. 6. Portion of geometrically orthotropic finite element model.

Table 4. Natural frequencies and deflection for 6m square orthotropic plate models.

Model Type First | Second | Third | Fourth | Fifth | Maximum
Mode | Mode | Mode | Mode | Mode | Deflection
(Hz) | (Hz) | (Ho) | (Hz) | (Hz) | (mm)

Geometrically | 43.44 46.62 51.65 57.72 64.39 1.22
Orthotropic

Materially 44.61 45.85 48.02 51.27 | 55.73 1.12
Orthotropic

% Variation 2.7 1.7 7.0 11.2 13.5 8.2
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As the natural frequencies are predicted reasonably well by the materially
orthotropic finite element model of the 6m square plate, particularly for the lower
modes, it was considered sufficiently accurate to be used for the model of the full
bridge. Great care was taken to ensure the correct weight of the bridge was used
in the model. The weight of road surfacing was included as this accounted for
approximately 30% of the weight of the bridge. This is a particular feature of
long-span steel orthotropic bridges. A final check was made by comparing the
weight of the model with the known weight of the bridge as determined by its
designers and constructors.

3.5. Calculation of modes and natural frequencies

The model of the bridge was analysed to determine the first 150 natural
frequencies. This gave all of the mode shapes up to a frequency of over 25 hertz.
This was taken as the highest frequency likely to be excited by the moving trucks.
Although a large number of mode shapes were considered, only a small number
of these are significant in determining the dynamic response of the instrumented
section of the bridge. Typically these might be the first several modes of the
entire bridge and the modes of local bending of the orthotropic plate between
transverse beams at the instrumented section.

FiG. 7. First mode shape of bridge.

The density of the finite element mesh was increased locally in the region
corresponding to the instrumented section. This was done to provide greater
accuracy for localised mode shapes in this region. It was not practical to provide
such a fine mesh density throughout the model due to excessive analysis times, nor
was it considered necessary as the results were only required for the instrumented
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section in this case. Figure 7 shows a plot of the first mode shape of the bridge.
This corresponds to a frequency of 1.07 hertz. Figure 8 shows mode shape number
150 which shows a localised vibration in the region of the instrumented section.
This corresponds to a frequency of 26.48 hertz. Table 5 shows the frequencies of
the first 50 mode shapes.

" e
lltl”l',.-“"'.',- e

N __““\““- ———
SRR UNSS

Location of transverse beams

Fic. 8. 150" mode shape (elevation), localised vibration of instrumented section.

Table 5. First 50 natural frequencies of bridge.

mode | F (Hz) | mode | F (Hz) | mode | F (Hz) | mode | F (Hz) | mode | F (Hz)
1 1.0732 11 4.1836 21 5.896 31 7.0003 41 8.4743
2 1.278 12 4.4658 22 5.9859 32 7.2242 42 8.5733
3 1.5309 13 4.6063 23 6.0551 33 7.2757 43 9.0462
4 1.7475 14 4.767 24 6.1271 34 7.3263 44 9.216
5 2.0127 15 4.8871 25 6.2238 35 7.5749 45 9.5807
6 2.2071 16 5.0448 26 6.3242 36 7.6932 46 9.7779
7 2.7669 17 5.4 27 6.5078 37 7.8172 47 9.9099
8 3.0954 18 5.5026 28 6.7029 38 7.9217 48 10.0005
9 3.3628 19 5.6867 29 6.7499 39 8.142 49 10.3955
10 3.9365 20 5.8295 30 6.9278 40 8.3093 50 10.5789

3.6. Calculation of transient bridge response
The general equation of motion of the bridge is expressed as:
(3.1) M + [Clx + [K]x = F(t)

where x is the nodal displacement vector, [M] the mass matrix, [C] the damping
matrix, [K] the stiffness matrix, and F(t) the force(s) applied to the structure as
a function of time.

If the model contains mn nodes, there are m degrees of freedom, i.e., m sets of
displacements. Equation (3.1) becomes difficult to solve as the [M], [C] and [K]
matrices cause coupling in the system. Therefore, the process of modal decoupling
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is used. This is the process by which the modes of vibration of a structure
are used to reduce a multi-degree of freedom system to obtain the equations of
motion in terms of just one-degree of freedom systems. The displacement vector
x, expressed in geometric co-ordinates, is transformed to generalised co-ordinates
z, as

(3.2) X = ¢z

where ¢ = {¢1,d2,.covenne. , ®n} is the matrix of the eigenvectors (mode shapes)
and n is the number of modes used in the analysis. By substituting Eq. (3.2) into
(3.1), pre-multiplying by ¢ (the transpose of the eigenvectors) and by taking
advantage of the orthogonality properties (CLOUGH and PENZIEN, [2]) of the
eigenvector relative to the mass and stiffness matrices, we obtain:

1 000
T | 0 1 00
00 .1
w: 0 0 0
T, | 0 wi 0 0
0 0 . w?

However, decoupling the damping matrix [C] can only occur if it is assumed
that the corresponding orthogonality condition applies to the damping matrix:

¢T[C]¢Z = 0, m 7é i7
(3.5)
Ci = ¢} [Cl¢s = 2w,

where 7 is the i-th degree of freedom, w; is the i-th natural frequency and &; is
the modal damping ratio of the i-th mode.

In this derivation of the normal co-ordinates equations of motion, it has been as-
sumed that the normal co-ordinate transformation serves to uncouple the damp-
ing forces in the same way as it uncouples the inertia and elastic forces. However,
there are only certain conditions under which this decoupling will occur. Rayleigh
damping assumes that the damping matrix can be expressed in terms of the stiff-
ness and mass matrix as follows:

(3.6) [C] = ao[M] + a1[K]

where ag and a; are arbitrary proportionality factors.
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If Rayleigh damping is used, the damping matrix satisfies the orthogonality
conditions and therefore it can be decoupled. Therefore, it is evident that a
damping matrix proportional to the mass and/or stiffness matrix will enable
uncoupling of the equations of motion. With this type of damping matrix it
is possible to compute the damping influence coefficients necessary to provide a
decoupled system having any desired damping ratio in any specified number of
modes (CLOUGH and PENZIEN, [2]). For each mode 4, the generalised damping
is given by :

(3.7) Ci = ¢] [Cl¢s = 2w;.

Therefore, the set of equations described in (3.1) becomes:

(3.8) % + 26wz + wiz = R(t); i=1,2,...,n

where n is the number of degrees of freedoms, and R(t) is called the response
function which is defined as the generalised force associated with mode n and is
defined as:

(3.9) R(t) = (¢")(F(t)).

The natural frequencies of bridges can readily be calculated by analytical
methods or by experiment. However, as the evaluation of a specific damping
property is impracticable, the damping is generally expressed in terms of damping
ratios established from experiments on similar structures (CLOUGH and PENZIEN
12)).

Equation (3.8), which is a second order differential equation, can be solved to
calculate the generalised displacements for each mode shape by using the Runge-
Kutta method in which the second order equation is divided into two first order
equations (THOMSON, [6]). The calculation of the dynamic displacements then
follows a simple recursive method:

1) Firstly, a load or train of loads, i.e., a vehicle, is placed at the beginning
of the bridge, with initial conditions of zero bridge displacement, velocity and
acceleration. The acceleration of the bridge is assumed to vary linearly between
the initial position and the first time step.

2) At any time increment (¢ + At), the longitudinal position of a load or
vehicle is determined.

3) The response function of the bridge is then determined for the particular
longitudinal position. This is done by geometrically apportioning the loads to
the four closest nodes and multiplying the nodal forces by the nodal mode shape
ordinates.
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4) The displacement, velocity and acceleration of the bridge are known at
this time step from calculations in the previous time step. These are input into
the differential equation and the displacement, velocity and acceleration of the
bridge are calculated for this time and the next time step.

5) The process is repeated until the load or vehicle clears the bridge and for
each mode shape. ‘

This procedure is illustrated in Fig. 9. Equation (3.2) is used to convert the
generalised displacements to actual displacements for each mode shape. The total
displacement of the bridge at any point of the bridge is the sum of the actual
displacements for the individual mode shapes.

Once the transient response of the bridge has been found, this can be com-
pared with the observed response of the bridge. This is the subject of ongoing
research. Some of the experimental observations are presented and discussed in
the next section of the paper.

4. EXPERIMENTAL RESULTS

This section discusses the results obtained from the two tests described earlier,
namely the static and dynamic tests with the two different truck configurations.

4.1. Static and dynamic tests

The strain recorded on the underside of each of the seven longitudinal stiff-
eners located under the slow lane were summed to get the response at the section
to the passage of both truck configurations. This was carried out for both in-
strumented sections. This procedure was repeated for all of the different truck
velocities. Figure 10 shows the response of section 2 to the passage of the 2-
axle rigid truck at two different velocities. These two velocities are 10 km/h
and 80 km/h and induce the greatest and least amplitude of bridge response
respectively. Figure 11 illustrates that this phenomenon, i.e, a reduction in the
amplitude of bridge response with the increase of velocity was also found to be
true for the 5-axle truck. However, this experimental relationship between bridge
response and velocity is quite complex as illustrated in Fig. 12. This graph illus-
trates the dynamic amplification factors, DAF, of the bridge for different passages
of the two trucks.

The DAF is calculated by dividing the response of the bridge due to a truck
travelling at a certain velocity divided by the static response of the bridge. In
this experiment, the quasi-static response (i.e. truck moving very slowly) of the
bridge is used as the static response in the calculation of the DAF. It is evident
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from Fig. 12, that the dynamic response of the bridge increases with increasing
velocity up to a velocity of about 10 km/h. After 10 km/h, the response of the
bridge begins to decrease steadily with increasing speed. The response of the
bridge to a truck travelling at 80 km/h is 20% less than that due to a truck
moving very slowly across the bridge. It was also found that the response of
the bridge was similar for two completely different truck configurations. In fact,
the DAF recorded at section 2, were almost identical for the two different truck
configurations.
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Distance (m)

F1G. 10. Response of orthotropic deck to 2-axle rigid truck at different velocities (section 2).
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FiG. 11. Response of orthotropic deck to 5-axle semi-trailor at different velocities (section 2).
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F1G. 12. Dynamic amplification factors.

4.2. VTT instrumented truck

One of the primary objectives of the experiment with the VI'T instrumented
truck was to compare the dynamic loads induced by the truck on a smooth road
pavement and on the orthotropic deck. Figure 13 shows the variation of the
dynamic axle weights of the first axle of the instrumented truck both on the
pavement (Fig. 13a) and on the bridge (Fig. 13b). In order to achieve this com-
parison, these maximum and minimum impact factors (IF), (which are described
as the dynamic axle load divided by the static axle load) for each of the axles were
calculated for 4 runs of the instrumented truck on the smooth road pavement.

80 80
z z
é 70 % 70
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‘s 60 ‘s 60 Y-
: TV Vvvvvkuu :
L 50 —= 50
< <
40 . . 40 : ’
0 2 4 0 2 4
Time (s) Time (s)
a). on pavement b) on bridge

F1G. 13. Dynamic loads (1% axle) of VTT instrumented truck.

The average maximum and minimum IFs were then calculated. The same IFs
were calculated for the truck on the bridge. Table 6 illustrates the comparison of
the IFs for the truck on the pavement and on the bridge.
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Table 6. Average impact factors of axle loads for instrumented vehicle
(LW - Left Wheel, RW — Right Wheel).

1%* Axle 2" Axle 374 Axle

Lw RW LW RW Lw RW

IF (Pavement) | +£21.9 | 4+19.1 | £33.6 | £31.9 | £36.1 | £34.5

IF (Pavement) +20.5 £32.7 +35.3

IF (Bridge) +19.3 | £17.6 | £29.5 | £28.4 | £39.1 | £33.7

IF (Bridge) +18.5 +28.9 +36.4

It is evident from these results that the IFs of the truck on the bridge and on
the pavement are quite similar. This is an interesting result, since generally
the pavement is considered to be rigid when compared to the flexibility of a
bridge. Therefore, the motion of the bridge could induce some motion in the
truck. However, as can be seen from Table 1, it does not increase the maximum
weight applied to the bridge by the truck in this case.

3000 —— Axle 1L (kN) 5000 — Axe 2L (kN)
o 250 1 — Axle IR (kN) o 4000 4 — Axle 2R (kN)
2000 { % 3000
Z o 2
<~ e 2000 -
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O v T g 0 o 3 Ll . i
0 10 20 30 0 5 10 15 20 25
Frequency (Hz) - Frequency (Hz)
(a) Front axle (b) First axle of rear tandem

Fic. 14. Frequency spectrum of dynamic axle loads.

A fast Fourier analysis (FFT) was also conducted on the dynamic axle loads
and it was found that truck is vibrating at similar frequencies when it is travelling
on the road pavement and on the bridge. Figure 14 illustrates the FFTs for
the first and second axle of the instrumented truck travelling across the bridge.
Figure 14(a) illustrates that the first axle is mainly vibrating at the body bounce
frequency of the truck (2 — 3 Hz), while the vibration of the first axle of the
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tandem is more complex, with frequencies of body bounce and axle hop (2 -
3 Hz and 10 Hz). The first harmonic of the out of roundness of the wheel can be
clearly identified at 7 Hz also.

5. CONCLUSIONS

This paper describes the ongoing research project in which the behaviour
of orthotropic steel deck bridges subject to static and dynamic vehicle loads is
examined. Such a bridge has been instrumented in Eastern France and several
experiments have been conducted. The two experiments described in this paper
were devised to calculate the effect of speed on the response of the bridge and to
compare the dynamic axle loads induced by an instrumented vehicle on the bridge
and on a portion of road pavement adjacent to the bridge. The experiments are
also being used to validate a dynamic orthotropic deck model, which is currently
under development. The model consists of two parts, firstly a 3-D finite element
and grillage model to calculate the natural frequencies and mode shapes of the
bridge (recommendations are given on how to model the plate orthotropy) and
secondly an analysis to calculate the dynamic transient response of the bridge
subject to moving loads, by the method of modal superposition.

There were a number of significant results found from the experiments.
Firstly, it was observed that the dynamic amplification factors (DAFs) were
found to increase with increasing truck speed up to 10 km/h. After this, the
DAFs started to reduce with increasing speed. It was found that the DAF was
20% less at 80 km/h than that at 5 km/h. This is an interesting finding for this
particular type of bridge, as fatigue cracks normally occur in the weld between
the longitudinal stiffener and the plate, which is close to the strain measurement
point. The response of the bridge has been shown to be less for trucks travelling
at normal highway speeds when compared to the static response. Therefore the
fatigue damage would be less than that calculated with the static response of the
bridge, which is the current procedure for fatigue assessment of such bridges. An-
other interesting finding is that the dynamic loads induced by the instrumented
vehicle were the same on the road and on the bridge.

These findings could have implications on the methods and techniques that
are used to assess orthotropic steel bridges for fatigue. However, these are ex-
perimental results from only one bridge. In order to validate, these findings, the
model results will be compared to the experimental results. It is also the opinion
of the authors that another experiment should be conducted on a similar bridge
to validate the findings from the Autreville bridge.
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