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SENSITIVITY ANALYSIS OF THE BAR STRUCTURES RELIABILITY
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In the paper certain theoretical basis and practical approach for design sensitivity analysis
of bar structure’s reliability under a special type of excitation are presented. The analysis is
carried out for the plane bar structures made of linearly elastic material. It is assumed that the
structure’s physical and geometrical parameters are deterministic variables and a non-Gaussian
stochastic process describes the load. Examples for a beam loaded by a stream of moving
random forces are presented.

NOTATIONS
Apg the force amplitudes,
b some design parameter,
c the damping coefficient,
D, the standard deviation of the system response w,
e the dimensionless measure of sensitivity,
E[] means the expected value of the variable within the brackets,
E the Young modulus,
fe the central factor of safety,
fr the probability density function of the capacity,
fs the probability density function of the load,
Fp the cumulative distribution function of the capacity,
Fs the cumulative distribution function of the load,

H(z,t —7,b) the dynamic influence function,

1 the moment of inertia,
m the mass density,
mo the second-order cumulant of structure’s response,

ma the second-order cumulant of structure’s response velocity,
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my the second-order cumulant of structure’s response acceleration,
N(0,¢) a Poisson stochastic process,

p(z) some deterministic function,

pe(€) the probability density function of the extreme peaks,

Df the probability of failure,

Dfu the upper bound of the probability of failure,

pm(n) describes a probability density function of single maxima,

Dr the probability of not failure,

px(n) a probability density function of the stochastic process X,

R structure’s capacity (limit strength, limit displacements, ...),
S the load (stresses, displacements, ...),

tr the random time points,

v the velocity of moving force,

w(z, t) the displacement of the structure,

w(z,t,b) structure’s response velocity,

w(z,t,b) response acceleration,

Wa(z) the normal mode of the system,

ap the sensitivity measure,

B the reliability index,

8() means the Dirac delta function,

nrR the coefficient of variation of the capacity R,

s the coefficient of variation of the load S,

Kk () the k-th order cumulants of structure’s response,

Kk (t) the k-th order cumulants of structure’s response velocity,

kE (@) the k-th order cumulants of structure’s response acceleration,
A a parameter of Poisson stochastic process,

Lo the frequency of maxima,

v the average frequency of the maxima in the time interval of length T,
o(z,t) a stress,

¢ (z,t,b) the parameter of the objective function that defines the reliability measure,

Y(b, p4(z,t,b)) some objective function,

Wn the radian natural frequency of the undamped structure,

1. INTRODUCTION

Because of large uncertainties in reliability-based design of engineering struc-
tures, especially of structures loaded dynamically, the sensitivity analysis of the
structure reliability can be useful for engineering decision-making proceses. It is
very important to know how the reliability of bridges, offshore platforms, towers,
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chimneys and other structures changes due to variations of design parameters,
and the passage of time. As the design variables, the material and element prop-
erties are assumed.

The objective of the present study is to give a theoretical basis and practical
approach for design sensitivity analysis of bar structure’s reliability under a spe-
cial type of excitation. The analysis is carried out for the plane bar structures
made of linearly elastic material. It is assumed that the structure’s physical and
geometrical parameters are deterministic variables and a non-Gaussian stochastic
process describes the load. Some results for a beam loaded by a stream of moving
random forces are presented.

2. RELIABILITY AND SENSITIVITY ANALYSIS — GENERAL FORMULATION

Reliability analysis is a complex process that comprises several stages, begin-
ning with collecting data about probabilistic characteristics of the material and
structure capacity, calculating the probabilistic characteristics of the structure
response, choosing the reliability measure, identifying the reliability system and
ending with calculation of the reliability. Usually, as the reliability measures,
the probability that within a time interval [0,¢] the capacity of the structure is
greater than the load (i.e. that the structure will be still within the safe domain),
is assumed.

@1)  p=1-p;=P{R-5>0}= [ fa()Fs(z)ds
—1- / fs(2)Fr(z)dz,

—o0

where py is the probability of failure, R is the structure’s capacity (limit strength,
limit displacements, ...), S is the load (stresses, displacements, ...), fr, Fs are
the probability density functions of the capacity and the cumulative distribution
function of the load, respectively. In the FORM (First Order Reliability Method)
and SORM (Second Order Reliability Method) methods, the reliability is mea-
sured by the reliability index 8, which corresponds to the probability of failure
ps. From the reliability point of view, the systems are divided into serial, parallel
and mixed ones.

In some cases it is possible to calculate only the two first probabilistic mo-
ments of system’s response. Therefore, for the practical structural reliability
analysis, M. Ichikawa proposed the following formula for the upper bound of
the probability of failure based on mean values of variances of strength R and
stress S:
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(2.2) pra = (4/9)(fink +n2)/(fe - 1)?,
where f. is the central factor of safety, ng and ng are the coefficients of variation
of R and S, respectively.

After choosing the reliability measure, its sensitivity can be also calculated.
The sensitivity problem is formulated here as the investigation how some objec-
tive function (b, p,(z,t,b)) changes due to the change of a given design parame-
ter b. The function ¢, (z,t,b) which is the parameter of the objective function, de-
fines the reliability measure (for example the probability of non-failure, Eq. (2.1),
the combination of the probabilistic characteristics of the system response and
load applying Eq. (2.2), etc.).

The sensitivity measures are [1]

(2.3) ap = d¢(b’ <P7(£L',t,b)) — i 6¢(b, (P"/(m,t,b)) 3907($,t,b)

db = Opy(z,t,b) ob
+ 8¢(b7 Py (.’L‘, ta b))
ob
and (the dimensionless measure)
(2.4) _ dn((b, ¢y(,1,0))) _ b 0Y(b, oy (z,t,b))
' din(b) (b, py(,1,0)) 9

oY(b, py(z,t,b)) Opy(z,t,b)
+ Z a%(; oy ab

As it follows from the expressions (2.3) and (2.4), for calculating the sensitiv-

ity of some further defined objective function (b, ¢, (z,t,b)) we must calcu-

0Y(b, oy (z,t,0)) OY(b, py(z,t,b))
ab T Opy(z,t,b)

. The two first types of derivatives can be calculated through direct

as well as the derivatives

late the derivatives
a‘P'y (z,t,b)
differentiation, but the third type of derivatives, which describe the design sen-

sitivities of the probabilistic characteristics of the structure response, is not easy
to calculate.

3. FORMULATION OF THE PARTICULAR PROBLEM

Let us consider vibrations of a linearly elastic beam due to a load modelled
by a random stream of point forces moving with the same constant speed along
the beam.



SENSITIVITY ANALYSIS OF THE BAR STRUCTURES RELIABILITY 409

The equation of motion under such excitation in the domain [0, L] of z is as
follows:

o' w(z,t,b) ow(z,t,b) 0%w(z,t,b)
(3.1)  EJ(b) 5o c(b) 5 + m(b)_8t2—
N(0,t)
= p(z) Z Apdlz — v(t — tk],
k=1

where w(z,?) is the displacement of the structure, EI is the bending stiffness of
the beam, m is the mass density and c is the damping coefficient, p(z) is some
deterministic function, Ay are mutually independent random variables, and #
are the random time points, which constitute a Poisson stochastic process N (0, t)
with parameter A; the symbol §(-) denotes the Dirac delta function, and b is some
design parameter.

The solution of the equation of motion (3.1) can be presented in the form of
the STIELTJES integral [4]

t
(3.2) w(z,t,b) = / A()H(z,t — 7, b)dN (7).
0

The dynamic influence function H(z,t — 7,b) is a solution of the equation

‘H(z,t — 7 -7 2H(z,t — 7
(33) EJ(b)ﬂbl;_,b)H(b)QEf_(mg_tﬂJr iy P é:2 ,b)
=d0(z —v(t—1)).

Using the normal mode approach, we can present the dynamic influence function
H(z,t - 7,b) in the form

(3.4) H(z,t—T1,b) = i Tn(t — 7,0)Wy(z),

where
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wp, is the radian natural frequency of the undamped structure, Wy(z) is the
normal mode of the system.

The k-th order cumulants of the structure’s response w(z,t,b) can be calcu-
lated from the relationships

t
(3.5) Kk (1) = B [4Y] / H*(z,t — 7, B)A(r)dr.
0

By analogy, the k-th order cumulants of the structure’s response velocity w(z, t,b)
and acceleration w(z,t,b) can be calculated from the relationships

t

(3.6) Kk (1) = E[AY) / H¥(z,t — 7, b)A(7)dr,
0
t

(3.7) Kk () = E[A¥ / Yzt — 7, B)\(r)dr.

0

Let us recall that: x2(t) = D2, = mq, k%(t) = D% = my, k%(t) = D% =
my. In the approach presented we obtain the mean value, the variance function
and other probabilistic characteristics of the output, but in practical engineering
applications we need the maximum response or the probability that the maximum

response does not exceed a certain precarious limit value.

4. DISTRIBUTION OF EXTREME PEAKS OF THE STRUCTURE’S RESPONSE

We assume for the structure’s response (stresses o(z,t) or displacements
w(z,t)), which in general is described by some stochastic processes, the following
extreme peak distribution [2]

Y
(4.1) pe(§) = —6_’1’%5—
where
¥ = vTexp (—%§2> , %‘é[]_ = —vTexp [_%52] . = o(z,t,b) "DE[U(iv,t,b)]
or

£ = w(z,t,b) -—DE[w(:c,t,b)], o “O\/l.__52
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is the average frequency of the maxima in the time interval of length T, pg =

1 [my . . mommg — m3 :
51/ —— is the frequency of maxima, €2 = ——>— "2 Varjous extreme peak
27 mo momy

distributions for different values of vT are shown in Fig. 1.

A
Probability density vT =105
of peaks
1.5 -
1.0 -+
0.5 +
P = 12 exp(-17f2)
! ! 1 x/ 1
1 1 { i I 1 1 -
S, =3¢, -G,

FiG. 1. Extreme peak distributions [2].

In the above figure p.(n) is a probability density function of the stochastic
process X, par(n) describes a probability density function of single maxima; it
is assumed that all of the maxima observed within the time interval T have the
some probability density functions.

5. EXAMPLES

To illustrate the approach presented, a bridge beam loaded by a traffic flow
is considered. It is assumed that the beam is simply supported and the traffic
flow is modelled by a stream of point forces moving at the some constant velocity,
but with random amplitudes. The force arrival time points constitute a Poisson
stochastic process with parameter \.

v
— — —

A A, At
Q {k. 1 tk tk¢ 1 %

F1G. 2. A model of a bridge beam and load by traffic flow.
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The sensitivity Eq. (2.3) of the beam’s reliability described by Eq. (2.1) due
to the change of the observation time T" and the expected values of the stresses
and displacements have been calculated. For calculating the reliability measure
(Eq. (2.1)), the probability density function fg of the extreme peaks of stresses
as shown in Eq. (4.1) and the normal distribution Fg for the bearing capacity
for the ultimate limit state have been assumed. For calculating the reliability
measure (Eq. (2.1)) the probability density function fs of the extreme peaks of
displacements as shown in Eq. (4.1) and the uniform distribution Fg for the limit
displacement for the serviceability limit state have been assumed. The cumulants
of the displacements and stresses have been calculated using the formulae (3.6)
and (3.7). More details about calculating the probabilistic characteristics of the
bridge’s beam response due to the traffic flow are given in [4]. All calculations
have been made using the Mathematica software system.
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F1G. 3. The probability of failure vs. the time of observation (years), the curve “1” is calculated
for the ultimate limit state, the curve “2” for the serviceability limit state.
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F1G. 4. The probability of failure calculated for the serviceability limit state vs. the expected
value of the displacement.

The results are shown in Figs. 3 — 7. The Figures 3 and 4 show the values
of the probability of failure as a function of time and as a function of the mean
value of the displacement, respectively. Figures 5 and 6 show the values of the
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sensitivity of the reliability as a function of time and as a function of the mean
value of displacement. Figure 7 shows the sensitivity of the probability of failure
calculated for the stresses due to the time of observation. The sensitivity of the
reliability versus time observation calculated for stresses has the same shape as
that calculated for the displacements, only the values are smaller.
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F1G. 5. The sensitivity of the reliability calculated for the serviceability limit state due to the
time of observation.
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Fic. 6. The sensitivity of the reliability calculated for the serviceability limit state due to the
expected value of the displacement.
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Fi1G. 7. The sensitivity of the probability of failure calculated for the ultimate limit state due
to the time of observation.
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6. CONCLUDING REMARKS

e An approach for sensitivity analysis of the reliability of bar structures loaded
by a special type of excitation, which is described by a non-Gaussian stochastic
process, has been presented.

The extreme peak distribution for the structure’s response as introduced by
SOLNES [2] has been assumed. This assumption included in the reliability analysis
seems to be interesting from the engineering point of view.

e As expected, from calculations made it follows that the reliability is very
sensitive to the expected value of beam’s response and very little sensitive to the
time of observation.

o It is to be emphasised that the results are strongly dependent on the quality
of data and the accuracy of load and structure models that are used in the
sensitivity analysis.
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