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The present paper is devoted to identification of the material phases location for one-
dimensional structure with respect to the first-order sensitivity of the identification functional.
A transient heat conduction problem within a thermal anisotropic one-dimensional structure
is formulated. The material derivative concept and both the direct and adjoint approaches
are used in considering the shape identification of the problem domain. The identification
functional is assumed in the form of the “distance” between the temperature of the identified
body and the measured temperature of real structure. Stationarity conditions are formulated
with respect to the obtained first-order sensitivities. Numerical examples of internal boundary
identification are presented.

1. PRIMARY PROBLEM FORMULATION

The problem formulation is typical for a class of one-dimensional problems.
Parameters describing the locations of material phases are unknown whereas the
state variable (for example the temperature) can be measured in fixed points by
using the contact thermometer or solid rod thermometer. The measuring points
can be located at the end or within the one-dimensional structure.

Some of the recent results concerning the sensitivity analysis and shape iden-
tification for steady heat conduction problem are developed in this paper in a
more general setting. The first-order sensitivity was analyzed by DEMS [1] for
the steady conduction problem and isotropic body material. The same problem
for the anisotropic body was discussed by DEMs and KORYCKI [3] and DEMS,
KoryckI and ROUSSELET [4]. DEMS and HAFTKA [2| and DEMS and MROZ
[6] used the material derivative concept in order to obtain the sensitivity ana-
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lysis equations. KORYCKI [6] identified the shape of the anisotropic body for
the steady conduction problem. Some numerical methods for shape identifi-
cation were shown by ROCHE and SOKOLOWSKI [8]. The heat transfer prob-
lems and the identification processes were discussed e.g. by KosTowski [7],
SzZURGUT [9], TALER [10]. The time-dependent problems given in this case in
the form of variational conduction equation were solved by the method discussed
by ZIENKIEWICZ [11].

Let us consider a one-dimensional structure made of finite number P of ma-
terial layers (Fig. 1). Design parameters are in this case the coordinates of the
material phases location b. The thermal properties of each material layer are
characterized by thermal conductivity A and material heat capacity c.
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x=0 x=b; x=by x=by  x=bs x=b, x=L
Fi1G. 1. The one-dimensional primary problem.

The transient heat conduction problem in one-dimensional structure can be
formulated as the variational conduction equation, the proper set of boundary
(i.e. Dirichlet and Neumann) conditions, and the initial conditions

ge+f= T
(1.1) for 0<z<L,
q= )‘T,:z:'*‘q*

T(z,t) = Tforl'r, q(z,t)=¢° for T,, T(z,0)=T
for 0<z<1L,
where we can introduce the following notations: T and ¢ — temperature field and
the heat flux, ¢ — material heat capacity, f — heat generation source within the
structure, A ~ thermal conductivity, ¢* — initial heat flux, T = dT'/dt — derivative
of the temperature with respect to time ¢.

We can now assume the continuity of temperature and of the normal heat flux
on the internal boundaries

(1.2) (T5(z,t,b)) =0;  (¢°(z,t,b)) = 0.

The modification process can be described now for the one-dimensional structure
as the translation of the material phases location

(1.3) L— L': 2t = 24 6p(z,t,b) = z +vP(z,t,b),
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where ¢(z,t,b) is a known function and v? = J¢/db, is the transformation
velocity field associated with the design parameter by; p = 1..P.
The material derivative of the length element has the following form:
D

(1.4) (dL), = Dy, (41) = v5dL.

Let us consider an arbitrary behavioral functional defined over a fixed time period

ty tf 2
(15 F= /Gdt =/ /\11 (T:Tws T 1) dL + Y v(T0q) | dt,
0 0o Lz =1

where ¥, -y are continuous and differentiable functions of their arguments.

The second term on the right-hand side of (1.5) is a sum of the function ~ at

both the ends of the structure described by the coordinates z = 0 and z = L.
The material derivative concept was used in shape identification of the prob-

lem domain. The first variation of the above functional has the form

F
(1.6) §F = g—bpéb,, = F,bb,,

where F, denotes the first-order sensitivity of the assumed functional F with
respect to design parameter by, p = 1..P.

The first-order sensitivity of functional (1.5) can be expressed with respect
to (1.4) as follows:

ty ty 9
1.7 F,= | G,dt = U,dL + ¥(dL dt
(1.7) P ‘0/ P /{/[1) "*‘ ( )p]‘*';’Yp}

0 L

173 9
- / { / [@pdL + o dL] + Zyp} dt
0

- 7 {/ (2 + wer,) dL+i7p] dt

0 LL

ty
= / {/ [‘P,TTP + Ve U(Ta)p + ¥ ggp + \II,TTP + sty + \I'Uf)z] dL
o 1

2
+ Z (V,TTp + V,q(Ip)} dt,
=1
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where we can denote

ov ov ov ov ov
V=220 Upl=ae; U,=2 0.=2 v,=2"
VA oT Tz acr’z sq aq T oT »f af
0 0
and Y = 575 Y= 5

The first-order sensitivity of the functional (1.5) can be next analyzed using both
the direct and adjoint approaches. The starting points of the calculations are the
primary problem formulation in the form of Eqs. (1.1) and general form of the
first-order sensitivity given by Eq. (1.7).

2. DIRECT APPROACH

Direct approach requires the solution of an additional time-dependent conduc-
tion problem associated with variation of each design parameter. The necessary
equations are obtained by differentiating the conduction equation, boundary and
initial conditions of the primary problem (1.1) with respect to each parameter.
They have now for the additional structure the form of conduction equation, the
set of boundary conditions and the initial conditions

{qf’x+fp=CTp for 0<z<1L,

& = XT% + g7
(2.1)
TP =T = T£ - ’1’,951)” for I'y, ¢ =¢% = qg - q?xv” for T'g,

TP(z,0) =Ty — T 4v? for 0<z <L,

where we can introduce the following notations: (e)? = 9(e)/0b, — the local
derivative, and (e), = D(e)/Dby, — the global derivative of the appropriate quan-
tity with respect to the design parameter.

In the above equations, the thermal conductivity A and the material heat
capacity ¢ are assumed to be independent design parameters. Thus, TP and ¢P
are the state fields of the additional problem and they should be now determined
in order to solve the direct approach. After some transformations, Eq. (1.7) can
be expressed, using the direct approach, in the final form:

ty iy

+/§:1\I/vpdt+7{/{

V- gg (\I,,'f‘)} "

(22) F,= [ / V ;TPdL
L 0
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(2.2)

[cont.]

2
+ (Voo ¥ + AT ) TS+ Uoq? L AL + Y [10Ty + 7,4(° + g00)]

r
i=1 T

2
+ Z [V,T(Tp + TovP) + 7"’(‘]2]1“ } dt,
q

i=1

where we can denote

[ [wsrraL| = [ / W ;TPdL
L L

The first-order sensitivity expressions using the direct approach - see the
Eq. (2.2) — are obtained as a sum of a few terms defined over the length of the
structure and at its both ends.

Introducing the direct approach, we should solve P additional heat conduc-
tion problems for P design parameters and the primary heat conduction problem.
In other words, evaluation of the first-order sensitivity vector requires the solu-
tion of (P + 1) problems. The conduction equation and the set of boundary -
initial conditions (2.1) describe each problem.

The primary and direct solutions are solved at the same time ¢.

ty

/ W 4 TPdL
L

0 t=ty t=0

3. ADJOINT APPROACH

An alternative method to calculate the first-order sensitivity is the adjoint
approach in which only one adjoint heat transfer problem is solved and the adjoint
state field is found. The adjoint and primary structures have the same shape
and thermal properties (i.e. the thermal conductivity A and the material heat
capacity ¢). The conduction equation and a set of boundary and initial conditions
describes the adjoint structure. The conduction equation for adjoint structure is
assumed in the same form as that for the primary structure — see the Eq. (1.1),

(3.1) qf;—}—fa——-cTa for 0<z< L,
. qa — )\CI",a:E + q*a
. a
where 7% = is the derivative of the temperature with respect to time 7. We

.
can next assume that 7 is the time determined now for the adjoint structure, and
7 can not be equal to t.
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Let us multiply the Eq. (3.1) by the test function z and integrate along the
structure

(3.2) /z (0% + £2 - i) dL =0,
L

Assume z = TP (temperature for the additional structure in direct approach) and
integrate the Eq. (3.2) with respect to time

tf tf
Ta
(3.3) / / (TPq®) ; — TRq® + TP f*)dLdt — / / cT”ddT dLdt = 0.
0 L 0 L

After some transformations of Eq. (2.1) we have obtained
tf
G4 [ [lorrrs - xamTe s 1rge 1o,
0L
FTPf* = T°f7 — Thg* + g TS dLdt

bty o t o
+ / TTPdL| / / T aras — / / e grai o,
dt dr
L o 01 07

The solution of above problem can be considerably simplified under vanishing
sum of the last two integrals in (3.4). Thus, it is convenient to assume that

dre 4t
dr ~ dt

(3.5)

Under the above assumption, we have the sum of the two last integrals in (3.4)

ty ty
a a
(3.6) —//chdI; det—//cT”dj; dLdt = 0.
0 L 0L

d d

From (3.5) it may be concluded that the following transformation between the
primary and adjoint time is considered

T=tr—t t=ty = 7=0,

(37) t=0 = 7=t

Thus, the adjoint problem should be solved backwards in time in relation to the
primary and direct solution.
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The first term on the left-hand side of Eq. (3.4) can be expressed now in the
form

ty

38) [ [I0TPT8 —ATET® + T2q — 7o) o 4 TPf0 — T - TG
0 L

+ ¢*PTC)dLdt = / / (TPf® = TfP — TPg*® 4 ¢*PT%)dLdt

193
2
+ / SATPTS — ATBT® 4 TP — T°¢")dt |,
0 =1 '

2
Z ATPTG — XTET® + TPq** — T°q*F)dt |r, .

=1

O\n

It is easily seen that after simple transformations we obtain from (3.4) and
Eqgs. (3.5), (3.6) and (3.8)

ty
(3.9) / T°TPdL|  + / / (TP f* — T2 g*)d Lt
L t=ty 0 L

t
2 ! 2
Z (ATPTS + TPq**)dt |r, —/Z (ATET® + T°q*P)dt |1,

O“-\n

ty
— / TTPdL|  + / / (T°f7 — g"T%)dLdt
L t=0 0L
by tr oo
_ / S (MTET® + Tg*)dt |r, — / SO(NTPTS + TPg*%)dt |,

Our next goal is to determine the conditions for the adjoint structure. Let
us compare the suitable terms in Egs. (2.2) and (3.9),
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T*z,7=0)= =¥ s(z,t =1tf) for 0<z <L,

fa=‘I’T—-—(-1—(\I/’T-) for 0<z<L,

T dt
(3.10) ¢ ==V U+ A0 ) for 0<z<L,
"z, 7) = yr on Ty,

Toa(x,T)z—'y,q on I'r.

Introducing now (3.10) and (3.9) into (2.2), the equation of the direct approach
of the sensitivity analysis can be transformed to the final form

(3.11) F,= [ / (eT® = U 4)(T, - T,xv”)dL]
t=0

L
t tr 9
+ / / (fPT* ~ ¢'PT5 + 'V 4q*P)dLdt + / > ToPdt
0L 0 =1

T

tf
+ / { [’y,TT,? + 7,99,2V" + (ATh + ¢ )T“]F
o ‘=1

i=

2
+ > ['y,TT,xvp +7,qq0 — (ATS + q*a)T’[’]F }dt.
q

i=1

The first-order sensitivity due to the adjoint approach — see the Eq. (3.11)
~ is given as a sum of few integrals defined along the structure and at its both
ends.

Introducing the adjoint approach we should solve one adjoint heat conduction
problem and one primary heat conduction problem. Thus, the evaluation of the
first-order sensitivity vector requires the solution of 2 problems. The conduction
equation (3.1) and the set of boundary and initial conditions (3.10) describe each
problem.

The adjoint solution is solved at the time 7, backward in time ¢ in relation
to the primary and direct solution.
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Using the equations derived above for direct and adjoint approaches of the
sensitivity analysis let us formulate the identification formulation of the problem.

4. IDENTIFICATION OF THE MATERIAL PHASES LOCATION

The identification functional can be assumed as the “distance” between the
temperature of the identified body T and the measured temperature T}, of the
real structure at the end Iy, € I'y:

tr
/ ) 2dt
0 T,

The stationarity conditions of the identification functional have the form
DJ
D%,
where DJ/Db, are the first-order sensitivity expressions formulated by adapta-

tion of direct and adjoint approaches, respectively. The local derivatives of the
integrand of (4.1) with respect to v = v(T) and ¥ = 0 are shown in the Table 1.

(4.1)

M!i—‘

(4.2) Jp= = =0,

Table 1. Local derivatives of the integrand for identification functional (4.1).

Fm € Fq Pq - Fm FT

Vg 0 0 0

Yr | T—Tn 0 0

Using the direct approach, the first-order sensitivity of the identification func-
tional can be expressed now with respect to (2.2)

tf 9
(4.3) Jp = / {Z[(T — T )(T? + T,mv”)]pmepq} dt.
The additional heat conduction problem has the form of conduction equation,
the set of boundary conditions and the initial conditions (2.1).
Using the adjoint approach, the first-order sensitivity of the identification
functional can be expressed (cf. Eq. (3.11))

(44) =

/ T(T, - Tao?) dL} + / / fPT® - ¢PT)dLdt
L

t=0
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[cont.] + ‘0/ i [()‘T,I;; + q*p) Ta] I'p + ; (T — Trn) Tz

(4.4) 7 { 2 2

- (2 )] fae

The adjoint heat conduction problem has the form of the conduction equation
(3.1) and the set of conditions (3.10).

The calculation of temperature requires the solution of the conduction equa-
tion for primary and additional or primary and adjoint structures. Using the
analytical methods (in fact, explicite methods — e.g. the method of separation
of variables), it is difficult to solve the conduction equation in real engineering
problems; the temperature should satisfy the boundary and initial conditions
(1.1) and the continuity condition on the internal boundary (1.2).

The conduction equation should be integrated in time, i.e. the time deriva-
tives dT'/dt, dTP/dt, dT*/dt should be calculated. It is convenient to integrate
the above equations using the method described by ZIENKIEWICZ [11]. The tem-
perature is interpolated in each Finite Element by equation

(4.5) T = Ny(t)T7,

where N;(t) — the continuous shape functions in time interval, T — the nodal
values of the temperature at the specified time ¢.

For linear interpolation of the problem only the values at the time ¢g = 0 and
t1 = At are considered. The Eq. (4.5) have now the following form:

T
(4.6) T =N N1|{ T }
1

and the shape functions are expressed as follows:
(4.7) Ny = (At —t)/At; Ny =t/AtL.

The Egs. (4.6) and (4.7) are considered in (1.1), (2.1) and (3.1) and the problems
can be solved with respect to time. Tj(t = At) is calculated with respect to
To(t = 0).

In this paper we have not analyzed the stability and stationarity conditions
of the above equations (4.5) and (4.6). The problem will be solved in a separate

paper.

5. NUMERICAL EXAMPLES

Let us assume the primary structure defined by Fig. 2. The one-dimensional
structure made of two material layers, is characterized by the material heat ca-
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pacities c1, co and the thermal conductivities A1, A2. At the right-hand end of the
structure the heat flux g(b,t) = ¢®be™? is considered. We have also one design
parameter, the coordinate of the material phases location b. The identification
functional was assumed at the end I'y, € Ty in the form (4.1). The shape mod-
ification is in this case the translation of the location of the material phases,

x=0 x=b ~x=1L
?\,] Ct Xz C2
| 1 <
I1: T=T’=const T =T Iy q= q°(b,t)
q = q+ I'mel

F1G. 2. The primary structure assumed in numerical examples.

(5.1) L— Lt: 2t =2+ db.

This modification gives us the configuration, which minimizes the identification
functional. It is convenient to assume the initial heat flux ¢* = 0 and the heat
source f = 0. The characteristic values of transformation velocity are assumed
now: v(z = 0) = 0;v(z = L) = 0;v(z = b) = 1. The velocity can be considered
in the form

% for 0<z<b,
(5.2) v(z) = I —x
<z <L.
b for b<z <

In this case we assume the linear interpolation of primary and adjoint problems
in time.

Under the above assumptions, the primary unsteady conduction problem can
be simplified in relation to (1.1) and has now the form

)\T,M:CT for 0<z< L,

( T(0,t) =T =const on TI'r,
5.3)
q(L,t) = ¢°be™* on Ly,

T(z,0)=T for 0<z<L.

The problem was solved using the direct approach. The additional structure has
now the form shown in Fig. 3.
The conditions of the additional problem are obtained by applying Egs. (3.10),
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x=20 x=b x=1L
A'l Cl 12 C2
| 1 ) <—3
T'r: TP=T*=0 T = T Tq qP=q”
q" = q"

Fi1G. 3. The additional structure in numerical examples.

AT%, =cI? for 0<z <L,
TP=T%=0 on Ir,

@ =¢"=qy=¢%" on Ty,
TP(z,0) =Ty —T4zv? for 0<z < L.

The first-order sensitivity of the identification functional can be now expressed
with the aid of Egs. (4.3) and (5.2) as follows:

t
(5.5) J, = / (T = T)T? |rer, dt.
0

5.1. Example 1

Let us consider a one-dimensional structure, the overall length of this struc-
ture is L. The initial location of the material phases is described by the co-
ordinate by = 0,45L. The left-hand layer is the thermal isotropic chrominium
steel (0.8% Cr, 0.2% C), characterized by A\; = 40 W/mK, ¢; = 20 kJ/K. The
right-hand layer is the thermal isotropic steel V2A, and thermal parameters equal
Ay =15 W/mK, ¢; = 10 kJ/K. At the right-hand end of the structure the heat
flux q(L,t) = ¢°e~t is assumed. At the same end of the structure we have the
boundary I'y, € Iy, the temperature Ty, is measured and its values in time are
shown in the Fig. 4. At the left-hand end of the structure the value of temper-
ature T'(0,¢) = 0 is known. The finite element net used in the analysis has 25
nodes.

Calculations were performed by using the external penalty function. Figure 5
shows the initial and final material phases location for ¢° = 100, whereas Fig. 6
presents the current identification history.
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F16. 4. The measured temperature T}, at the end '), € Ty,
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FiG. 5. Initial and final material phases location for ¢° = 100.
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5.2. Example 2

Let us consider the one-dimensional structure, the overall length of this struc-
tureis L. The initial location of the material phases is described by the coordinate
bo = 0.8L. At the right-hand end of the structure the heat flux q(L,t) = ¢%be~t is
assumed. At the right-hand end of the structure we have the boundary T', € T'y:
the temperature T,, is measured and its values in time are shown in Table 2 and
in Fig. 7.

Table 2. The identified T; and measured T}, values of the temperature for the Example 2.

Time [s] 1 2 3 4 5 6 7 8

T [°C] | 53.9773 | 20.4797 | 12.0066 | 9.8633 | 9.3211 | 9.1840 | 9.1493 | 9.1406

T; [°C] | 53.9773 | 20.4797 | 12.0066 | 9.8633 | 9.4211 | 9.1840 | 9.1493 | 9.1406

60+

S S S ST T T

........................................................................................

304

e P PR

0 =

F1G. 7. The measured temperature T}, at the end 'y, € T.

The left-hand layer is in this case the thermal isotropic brass, characterized by
thermal coefficient \; = 80 W/mK, ¢; = 10 kJ/K. The right-hand layer is now
the thermal isotropic zinc, Ay = 110 W/mK, cp = 20 kJ/K. At the left-hand end
of structure the value of the temperature T°(0,¢) = 0 is known.

The finite element net used in the analysis has 25 nodes. Calculations were
performed by using the external penalty function. Fig. 8 shows the identification
history and Fig. 9 the initial and final material phases location for q° = 100.
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FiG. 8. The identification history.
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FI1G. 9. The initial and final material phases location for ¢° = 100.
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