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The paper presents a method of constructing the optimum kinematic characteristics on the

basis of five-link suspension. In order to solve this issue, the perturbation method of analysing
nonlinear algebraic equations was used. After assuming the decision variables, defining ob-
jective functions and appropriate limitations, a sampling method of optimisation was used.
Calculations enabled us to obtain a correction of characteristics of wheel steering and camber
angles in comparison with initial characteristics. The obtained results indicate that it is pos-
sible to apply the above method to form the optimum characteristics of multi-link suspension

mechanisms.

NOTATIONS
A;,7=1,2,..,5 fixed points,
Bp k=1,2,..,7 moving points,
Bro,k =1,2,..,7 moving points in construction position,

FAj, Bk TBKO,
j=1,..,5k=1,..,7 vectors connecting the origin of co-ordinates O(0, 0, 0)

with an appropriate point of the mechanism,

qk = Tr'Bk — T'Bko displacement vectors; q = [qu,Qky,ka],
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TAjBj,TBkBl; YBkOBIO,
j=1,2,..,5k,1=1,2,..,7 vectors connecting pairs of the mechanism points (points
of the names that appear in the vector subscripts),

€ perturbation parameter,

é wheel steering angle,

¥ wheel camber angle,

Az, 0y, length of the ellipsoid half-shafts inside

which new positions of fixed points are looked for,

w coefficient defining the importance of selected
component of objective function

1. INTRODUCTION

The requirements concerning stability and steerability, travel comfort, longi-
tudinal and transverse camber of a vehicle, should be taken into account in the
process of constructing solid tyres suspensions. It is also important that the con-
struction parameters of optimally constructed suspensions are not changed dur-
ing normal usage of the vehicle, and that they satisfy the imposed requirements.
Multi-link suspensions are characteristic in comparison with other suspensions
because the wheel load is transferred to the vehicle body through more than
just three joints. Therefore, the loads of ball-and-socket joints and metal-rubber
joints used to connect the link to cantilever of the wheel and the vehicle-body are
smaller. Thanks to that, kinematic characteristics (mainly camber and steering
angles) remain almost unchanged.

FiG. 1. Multi-link suspension mechanisms: a) five-link Mercedes, b) four-link Nissan, c) four-
-link with an additional joint BMW.

In mass-produced vehicles, multi-link suspensions were first used in the 1980’s
by Mercedes in the models of the vehicle-body W201 (190) and W124 (five link
suspensions). Next, Nissan used four-link suspension in the models 300ZX and
240SX, BMW - four-link suspension in the model 850 and Volvo (model 760) -
four link suspension with an additional joint between links (Integralachse) [17].
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2. AIM AND SCOPE OF WORK

Multi-criterion optimisation may be useful to construct solid tyres suspen-
sions in view of the requirements presented in the Introduction. In order to solve
certain problems connected with this idea, a dynamic model of complicated struc-
ture should be used in computer simulation of a vehicle motion. The consequent
optimisation tasks can be solved with the help of genetic algorithms [20].

The above mentioned construction process can be divided into stages. In the
paper by J. KNAPCZYK [9], a division into 5 stages can be found:

e structural synthesis during which a selection of number and type of links
as well as moving fasteners is made,

¢ dimensional synthesis, the aim of which is to determine the range of values of
dimensional parameters of a mechanism of fixed qualities, preserving the required
limitations,

e clastokinematic and dynamic analysis which includes determination of dis-
placements and loads inside the joints and determination of elastokinematic char-
acteristics,

e modelling and computer simulation of the mechanism motion for kinematic
and forced excitation, model parameters estimation, parametric sensitivity anal-
ysis, optimisation of construction and other parameters,

e strength analysis, stiffness, deformations, and then making technical docu-
mentation.

The problem of suspension optimisation with respect to its kinematic charac-
teristics is solved first. At the next stages, the requirements concerning dynamics
are taken into account (longitudinal and transverse camber, travel comfort).

J. M. JIMENEZ (7] proposed a synthesis method of five-link suspension mech-
anism, which takes advantage of the optimisation methods. Lengths of links and
dimensions determining the cantilever position are assumed to be the design vari-
ables. Insignificant changes of wheel camber and insignificant side displacements
are also required. However, the defect of this method is arriving at solutions for
which collision of links might occur. Herein is presented a method which does
not allow any collision thanks to the assumption that an appropriate initial se-
lection of fixed and moving points (joints) has been made. Assuming appropriate
regions (e.g. spheres or ellipsoids) in which fixed points (points of suspension
fastening) are supposed to be placed in such a way as to form disconnected sets,
it is possible to avoid collision of the links. In the case when the regions are not
disconnected, it is necessary to apply additional conditions that would eliminate
collisions.

Papers [1, 13| contributed to the issue of synthesis, kinematics and dyna-
mics of multi-link suspension mechanisms. Mechanics of other mechanisms used
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in power transmission systems was approached in many papers, among which
the following are worth mentioning: [10 — 12, 14 — 16, 18]. Optimisation of
mechanisms is described in papers [2, 4, 5].

The primary objective of this paper is to present a method of analysis and op-
timisation of multi-link wheel suspensions with respect to the assumed kinematic
characteristics: steering and camber wheel angles.

3. METHOD OF ANALYSIS

The aim of kinematic analysis is to solve the system of equations of con-
straints. They are mainly nonlinear equations. The type of non-linearity of the
equations and their number depend on the mechanism structure. In order to
solve such a system of equations, the method of elimination or the numerical
iterative methods (e.g. Newton-Raphson’s or gradient methods) can be used.

The method of elimination involves reducing a system of equations to one
multinomial equation with one unknown. This method leads to determining all
the solutions and, additionally, it allows to avoid the singularities. However, the
procedure of elimination is very complicated and the procedure of determining
roots of the multinomial is sensitive to the calculation accuracy.

Numerical methods can be divided into dependent on or independent of the
standard concerning the initial point distance. The Newton-Raphson method is
one of the dependent ones while the perturbation method [3| is independent.

Fic. 2. Five-link suspension mechanism.
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If the initial point in the Newton-Raphson or gradient methods is not placed
near the final solution, the iterative process can be slow and its convergence
— questionable. What is more, the iterative method determines only one (the
closest to the initial one) out of many possible solutions. This solution does not
make it easier to look for other ones. The procedure, even repeatedly applied,
does not ensure that all the solutions are determined [9].

Five-link wheel suspension is presented in Fig. 2.

For the sake of the analysis, the suspension was replaced with a spatial mech-
anism without susceptible constraints. The motion of the assumed mechanism is
limited by geometric constraints which are described by the following system of
fourteen, nonlinear algebraic equations:

TA1B1 ©TA1B1 —TA1B10 © 41810 = O,
TA2B2 OTA2B2 —TA2B20 © T 42890 = 0

TA3B3 ©TA3B3 — r'A3B30 ©ra3p3o = 0

TA4B4 O T A4B4 — T A4B40 O T A4Ba0 = O

li
o

TA5B5 ©TA5B5 — T A5B850 © I A5B50

)

rB1B2 °TB1B2 — rB10B20 ©rB10B20 = 0

IB1B3 °TB1B3 ~ IB10B30 °rB1oB30 = 0

i

TB1B4 ©TB1B4 — YB10B40 © Y B10B40

YB1B5 ©TB1B5 — I'B10B50 © T B10B50

IrB2B3 ©TB2B3 — I'B20B30 © 'B20B30 =

I'B2B4 °©TB2B4 — TB20B40 © I'B20B40

I'paps ©rpaps — rB20B50 © FB20B50

B3B4 ©TB3B4 — TB30B40 © I'B30B40

I
Co oo o0 o o

'B3B5 °©rB3B5 — IB30B50 © ' B30B50

Examples of Egs. (3.1) in the expanded form are presented in Appendix 1.
In the above equations the symbol ‘o’ denotes scalar vector multiplication. They
express the (equated to zero) differences between distances of the points of the
mechanism in the camber position and the corresponding distances of these points
in the original position.

Equations (3.1) describe the mechanism configuration and are used to deter-
mine the (below defined) displacements qy, of points By, k=1,2,...,5, (for the
sake of the analysis, displacement q, = s was assumed to be the given parameter
which was changed in a particular range).

The following notations were assumed in these equations:
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Aj i =1,2,..,5 - fixed points (with respect to the system of co-ordinates
connected with the vehicle body) which are centres of the joints that connect the
suspension mechanism with the vehicle body;

B,k = 1,2,...,7 — moving points that constitute centres of the joints that
connect links (joints) with the wheel cantilever (k = 1,...,5) and cantilever points
placed on the axis of wheel rotation;

Bio, k= 1,2,...,7 ~ moving points in construction position;

T4, Bk, TBK0,J = 1,...,5,k = 1,...,7 — vectors connecting the origin of co-
ordinates 0(0,0,0) with the appropriate point of the mechanism;

Qi = Tk — I'pko — displacement vectors; qx = [k, Gy, Gk2];

T AjBj,TBEBL, TBKOBIO, ) = 1,2,...,5,k,1 =1,2,...,7 — vectors connecting pairs
of the mechanism points (points of the names that appear in the vector sub-
scripts).

Displacements qg, q7 of appropriate points Bg, By constitute the solutions
of systems of additional, linear equations. In previous papers, e.g. [6], linear
equations that are difficult in the numerical analysis, were used for the analysis
of these points motion.

In order to determine the position of the points, auxiliary vectors n and ng
are created and described by the equations:

n = rpip2 X I'B1B3,
(3.2)

ng = rp10820 X B10B30-

To determine displacements qg, the following equations are used:

rpiBe © 'B1B2 — I'B10B60 © IB10B20 = 0,
(3.3) rB1B6 ©TB1B3 — 'B10B60 © TB10B30 = O,

rpiBe © N —rgippeo © ng = 0.

To determine displacements qy, the following equations are used:

rp1B7 ©rB1B2 — rB10B70 ©TB10B20 = 0,
(3-4) rB1B7 © 'B1B3 — I'B10B70 © rB10B30 = 0,

rpip7 N —rpippro ©Ng = 0.

Equations (3.2) and (3.3) in the expanded form are presented in Appendix 2.
As before, the symbol ‘o’ denotes scalar vector multiplication while the sym-
bol ‘x’ — their vector multiplication.
Firstly, the system of 14 nonlinear equations (3.1) is solved. For this purpose,
the perturbation method presented in [3] and applied for suspension mechanics in
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[6] is used. This method, in comparison with the Newton-Raphson’s one, is not
so sensitive to the distance of successive initial points which makes it useful for
the optimisation methods. Moreover, it enables much faster calculations which
is significant with respect to optimisation because of repeated, multiple solving
of the changed mechanism.

Then, from systems of Eqs. (3.3) and (3.4), the co-ordinates of points Bg and
By are calculated. Knowing these co-ordinates makes it possible to determine
[17] the wheel steering angle from the equation

(3.5) § = arctg (M) ,
YB7 — YB6

and the wheel camber angle from the equation

(3.6) v = arctg ZBT 2B
\/[(xm ~zp6)” + (yp7 — yBe)Q]

In the analysis of additional points, solution of linear algebraic equations is
carried out after substituting the value of s parameter (numerically), and not
before the substitution (symbolically).

Evaluating the accuracy, we calculate the differences between distances of the
mechanism points in extreme positions and the corresponding distances of the
points in their original positions.

3.1. Basic assumptions of the perturbation method [3]
In the perturbation method, the left-hand parts of equations of general form:
(37) fj(ul,UQ,...,’U/n) :0’ .7 = 1727"'777'7

with the unknowns u; (displacements grz , gy and gk, of moving points By,
k=1,2,..,7), are divided into linear f; and nonlinear parts f;:

ij(ul)UQ, “-aun) + fNj(ulaU'?a 7un) = 07

where, in our case, the nonlinear parts are of the second degree because of the
unknowns ;. Perturbation parameter ¢ is introduced in the last system of equa-
tions which leads to the auxiliary system of equations:

(38) gj(€,u1,u2, ---)'u'n) = 07 .7 = ]-a 23 ooy Ty
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where:

gj(saul,u% ’un) = ij(Ul,UQ, ,Un) + EfNj(ulau% 7un)

For € = 1 the system of Eq. (3.8) is identical with (3.7), while for € = 0 the
solution (3.8) is simple. Solutions of the system of auxiliary Eq. (3.8) is presented
in the form of series with respect to the power e:

m
(3.9) u]'(E) = Z Eku]'k, ] = 1,2, Ny,
k=0

assuming that for m — oo series (3.9) have the radius of convergence greater
than 1. After substituting the expression (3.9) to (3.8) we obtain:

gile, ui(€), ua(e), ..., un(€)] = 0, i=12,..,n.

After an additional assumption that the left-hand parts of the last system of
equations can be expanded series with respect to € powers, they are presented in
the series:

o0
(3.10) Yoefgip=0,  j=1,2,..,n,
k=0

where g, is such a system of expressions that gjo contains only ujo unknowns,
gj1 contains ujo and uj1, and generally g;, contains Uj0, Uj1, -+, Ujk, Where J, k =
1,2,..,n. In order to fulfil condition (3.10) it is enough to demand that the
algebraic equations (linear ones in this case) be satisfied, each with n unknowns:

gk =0, k=12 ..n.

We obtain solutions of the system of Eq. (3.7) after substituting ¢ = 1 to
expansions (3.9). They are as follows:

m
U; = Zu]‘k, j = 1,2,...,77,.
k=0

Using the above-presented method for the analysis of the mechanism in the
camber position, we determine a new position which is the basis for determining
the following position. Then we repeat the procedure and obtain a series of
solutions which, after applying the spline functions, result in final solutions qai(s)
that describe displacements of points By, k = 1,2, ...,7, as functions of the given
displacement g, = s.

In the case of the described suspension, the first equation of the system (3.1)
reads as follows:
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(B1 — za1)* + (Y1 — y41)? + (281 — 241)?

- [(93310 —z41)% + (yp10 — ya1)? + (210 — zA1)2]

= (zp1 — z41)* + (yB1 — ya1)? + (231 — za1)? — 12 = 0,
and after displacing point B by the vector

q1 = [lea g1y, Chz],
it will take the form

[(zB1 + qiz) — 241)* + [(yB1 + Q) — ya1]’ + (281 + q12) — za1]?
- [(xBlo —za1)* + (yB1o — ya1)? + (zB1o — ZA1)2] =0.
After transformation we obtain

{(wm = za1)® +2(zB1 — Ta1)qiz + Qfx]

+ [(ym —ya1)? +2(yp1 — ya1) qiy + qu]
+ [(ZBI = z41)* +2(2B1 — zA1)q1: + (Ju]
~ [(#B10 = 241)* + (yB10 — Y41)® + (2B10 — 241)%] = 0,
thus
(zB1 —za1)” + (yp1 — ya1)? + (zB1 — 241)?

- [(113310 —z41)% + (yB10 — ya1)? + (2810 — ZA1)2J

+2(zp1 ~ 241)q1z + 2(yB1 — Ya1) @1y + 2(2B1 — 241)q12 + @y
+q3, + ¢t = 0.

After following transformations we obtain an equation in the form that en-
ables us to use the perturbation method:

2(zp1 ~ 241)q1z + 2(yB1 — Ya1)q1y + 2(2B1 — 241)q12
+qi, + i, + ¢, = 0.

Once the perturbation parameter ¢ has been introduced and the equation
divided into linear and nonlinear parts, we obtain:
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2(zp1 — T41)q1z + 2(yB1 — Ya1)qiy + 2(2B1 — 241)912
+e(ql, + iy + at.) = 0.

The remaining equations of the system (3.1) are transformed in a similar way.

4. KINEMATICS AND OPTIMISATION OF THE MECHANISM

Numerical simulation of motion of the mechanism presented as a dynamic
model makes it possible to examine the influence of suspension kinematics on
stability and steerability. In this way, the kinematic characteristics of suspensions
are determined. Knowing these characteristics and using a steering suspension
[18] trajectories of points B;, i = 1,...,5 can be determined. We can determine
the initial positions of the suspension fixed points A; and lengths of joints /; on
the condition that we know the trajectories of points B;.

Optimisation involves determination of the solutions in the original position
and then selection of new positions.

In the mechanism optimisation, co-ordinates of vectors p; = [pjz, Pjy, Pjzl,
J =1,...,5, the origins of which are points A;, and the ends ~ points A4;,, are the
decision variables. The first stage of optimisation is to determine solutions of the
mechanism in its original position. Then new positions are selected. There are
certain limitations assumed in the optimisation and they are described by the
following inequalities:

(4.1) B B B <o, j=1,.5
Gz Yy Y

During the optimisation process points A;, are determined. They constitute
new, changed positions of points A; of the investigated mechanism. For each j
an appropriate inequality means that point Aj;, is supposed to be found inside
an ellipsoid of centre A; and half-shafts a;;, ajy, @, or in a particular case when
ajz = ajy = a;; = R;, inside a sphere of radius R;. The assumed limitations
were used for applying spherical co-ordinates to transform every three random
numbers of uniform distribution in the range (0, 1) to an appropriate point in
the Cartesian space. In order to simplify the optimisation, the same R; values
were assumed for all the points and they were equal to R; = R = 15 mm.

One of the criteria of optimisation is the sum of absolute values of ordinate
differences (value of the wheel camber angle) of the demanded (ideal) and calcu-
lated (determined numerically) characteristics of the investigated mechanism, for
the same abscissae s = s; (what means for the same mechanism, the deflection
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described by the variable s € (~100,100)). A sum concerning the characteristics
of the wheel steering angle is assumed to be the second criterion.

Initially, we also used the integral criterion of curve matching but it turned
out to be too time-consuming. However, it was possible to replace it with the
above-mentioned sum of the point distances.

The objective function is assumed to be the weighted mean value of both
criteria

ls

(42)  fe=3_ (why(s;) = vols)l + (1 = w)ld(s;) — dols,)]), 0 <w< 1.
j=1

Since the obtained characteristics v(s) and §(s) depend on the decision vari-
ables, the objective function is also dependent on them.

5. NUMERICAL EXAMPLE

It is assumed in the numerical example that the aim is to tend to the following
kinematic characteristics of suspension:

1) Wheel steering angle should be constant and equal to 0(s) = 0.

2) Wheel camber angle should be defined by linear function v(s) = 0.0189 +
0.000529s.

Weight coefficient in the objective function w = 0.5.

The theory of vehicle suspension construction proves that it is mostly advan-
tageous if the wheel steering angle §(s) does not change with the springing motion
while the wheel camber angle performs linear run +(s) which makes it possible
to avoid unwanted additional forces resulting from the curvilinear motion.

Co-ordinates of the initial positions of mechanism points have values that are
close to those presented in [8]. The co-ordinates expressed in mm are as follows:

A; = (~105.0,210.0,225.0); A = (319.0,500.0, 262.0);
Az = (214.0,415.0,297.0);  Aq = (199.0,448.0,400.0);

As = (0.0,340.0,410.0);

By = (—43.0,662.0,208.0); B, = (44.0,632.0, 163.0);
B3 = (141.0,666.0,269.0); By = (78.0,662.0, 397.0);
Bs = (~5.0,666.0,427.0);  Bg = (—0.4,605.0,300.5);

Bz = (0.0,705.0, 302.0).

Since the sampling optimisation method was used in our case, selections were
conducted in such a way as to obtain almost uniform distribution of the selected
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points inside the spheres of centres A;, j = 1,...,5. After each selection of posi-
tions of the mechanism points, a solution of the system of 14 nonlinear, algebraic
equations and of the additional equations was determined. Consequently, char-
acteristics of the changed mechanism could have been calculated and then - the
appropriate value of the objective function was found.

5000 selections were conducted, the result of which was about 25% correction
in the examined cases. The co-ordinates of points after selection were rounded
to integer number of millimetres. New, optimum co-ordinates of fixed points A;
of suspension are presented below:

A? = (—109,208,239), A3 = (317,500,251),
A% = (217,419,302), A% = (193,451,403),

AZ = (3,341,422).

New value of the objective function was about 62.9% smaller than the initial
value.

In order to check the correctness of the solution, another optimisation was
carried out. The co-ordinates of points A; obtained as a result of previous calcula-
tions were assumed to be the initial data. After conducting 5000 new selections,
correction of the objective function values was not observed in any case. Fig-
ure 3 presents the characteristics of wheel steering angle §(s) for the original
mechanism and the one obtained as a result of optimisation.

0.4

0.2
0 O3 =

X, N Cd
"0 2 k\___,/’
-0.4
-100 ~-50 0 50 100
A)
————— original mechanism ——— changed mechanism

Fig. 3. Characteristics of the change in steering angle according to the vertical displacement
of point B7 for the original and changed mechanism.
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Figure 4 presents characteristics of the wheel camber angle y(s) for the orig-
inal mechanism and the one obtained as a result of optimisation.

5
) 2
3 //
y/
2 e
b4 L ,/

0 <

-1 <

i /
-100 -50 0 50 100

S
------ original mechanism ——- changed mechanism

Fic. 4. Characteristics of the change in camber angles according to the vertical displacement
of point B for the original and changed mechanism.

6. CONCLUDING REMARKS

This paper presents a method of constructing the characteristics of a five-link
suspension. The method takes advantage of the perturbation method in order
to solve the kinematics, in connection with the sampling method of optimisa-
tion. Moreover, a new, simpler set of equations (partly linear) was used for this
kinematics analysis.

Weighted mean value of the absolute values of ordinate differences for the
characteristics was used as a criterion of optimisation. The sum was sought for
and obtained for a finite number of the considered points of characteristics. On
the basis of calculations it was found that the criterion is of better accuracy in
comparison with the integral criterion of curve matching. Since it is less time-
consuming, it is more useful for optimisation issues where calculations connected
with determining the values of the ob jective function are made repeatedly.

As it was mentioned before, the analysis of the complex system of 14 non-
linear algebraic equations that describe geometric constraints of the investigated
mechanism is time-consuming. The sampling method of optimisation requires
to solve the system afresh for every newly selected point. Therefore, it seems
recommendable to verify and use some other optimisation method which, for
sufficient accuracy of the results, will not involve extensive calculations of the
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objective function values. Thus it is advisable to replace the sampling method
of optimisation with such a method that would take advantage of the previously
calculated values of this function. It is noticeable, however, that e.g. quickly
operating gradient methods are of little use because of lack of analytic expressions
describing the objective function derivatives.

The presented method is partially used in the research project by which the
presented paper is financed. Additionally, it will be used in dynamic research,
according to the stages depicted on page 2.

s

>
600 - 300
)<400\ To0 < 0o

0
Y 2000 ) <

100

FiG. 5. Suspension mechanism and its moving point trajectories.

APPENDIX 1

Examples of equations: the first, sixth and last of the system of Eq. (3.1) in
the expanded form:

(zp1 — z41)° + (Y1 — ya1)? + (281 — 241)°

- [(33310 —z01)% + (yp1o — ya1)* + (210 — ZAI)Z] =0,

(zp2 — zp1)% + (yp2 — yB1)? + (212 — 2B1)°

- [(37320 —z510)% + (yB20 — ¥B10) + (2820 — 21310)2} =0,

(zps — z3)? + (yss — ygs)? + (25 — 2p3)*

- [(xyso — 2p30)% + (yBso — yp3o)® + (zBso — 2330)2} =0.
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APPENDIX 2
Equations (3.2) in the expanded form:
n =1i[(yp2 — yB1)(2B3 — 2zB1) — (2B2 — 2B1)(¥B3 — YB1)]
+il(zB2 — 2B1) (B3 — 2B1) — (zB2 — TB1)(2B3 — 2B1)]
+k{(zp2 — z51)(yB3 — yn1) — (yB2 — yB1) (€83 — TB1)],
ng = i[(yB20 — ¥B10)(2B30 — 2B10) — (2B20 — ZB10) (YB30 — YB10)]
+3[(2B20 = zB10)(ZB30 — ZB10) — (ZB20 — TB10)(2B30 — 2B10)]
+k [(zp20 — B10)(yB30 — YB10) = (YB20 — YB10)(TB30 — TB10)]
Equations (3.3) (similar to Eq. (3.4)) in the expanded form:

(zBs — zp1)(zB2 — xB1) + (YBs — YB1)(YB2 — YB1)
+(2B6 — 2B1)(2B2 — 2B1)
—[(zB60 ~ xB10) (% B20 — TB10) + (BEO—YB10) (YB20 — YB10)
+(2B60 — 2B10)(2B20 — 2B10)] = 0,

(zps — zp1)(zB3 — zB1) + (yBs — YB1) (YB3 — YB1)
+(zBs — zB1)(2B3 — 2B1)
—l(zBeo — zB10)(TB30 — B10) + (yB60 — YB10) (¥B30 — YB10)
+(2B60 — 2B10) (2830 — 2B10)] = 0,

(z6 — zB1)[(yB2 — yB1)(2B3 — 2B1) — (2B2 — 2B1) (YB3 — YB1)]

+(yBs — yB1)[(2B2 — 2B1)(TB3 — TB1) — (B2 — ZB1)(2B3 — 2B1)]
+(zB6 — 2zB1)[(zB2 — B1)(yB3 — yB1) — (VB2 — YB1)(TB3 — TBY)]
—(zB60 — zB10)[(¥B20 — ¥B10) (2830 — ZB10) — (2B20 = 2B10) (YB30 — YB10)]
—(yBeo — yB10)[(2B20 — 2B10) (T B30 — £B10) — (B20 — TB10)(2B30 — 2B10))

—(2B60 — 2B10)[(* B20 — £B10)(YB30 — YB10) — (YB20 — YB10) (T B30 — ZB10)] = 0.
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