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In this investigation, particular attention is paid to the generalized theory of fracture

mechanics developed by Andrews and based on the spatial strain energy density distribution
W in the case of an infinite lamina. A numerical analysis using a finite element method brings
out some serious shortcomings in the fundamental equation of this theory when dealing with
laboratory specimens of finite dimensions. It is proven that the J integral derived from this
equation has no physical meaning. We have proposed an alternative expression of W which

leads to a simplified J integral requiring measurements on one specimen only.
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1. INTRODUCTION

Several methods based on energy considerations exist for characterization of

the fracture of materials. One of the most popular methods is the J-integral of

RICE [1] defined as:
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where W is the strain energy density, T; and u; denote the traction and displace-
ment vectors respectively, and dS is a small element on a curve I' surrounding
the notch tip. The integral assumes the same value for all paths I', both in the
cases of linear or nonlinear reversible elasticity.

The J integral is commonly employed to study the fracture of metallic mate-
rials and extended by several researchers to investigate the onset of crack growth
in rubber-like materials [2, 3]. The fracture event is characterized by the critical
value J. which is an energy necessary to create new surfaces.

In 1974, ANDREWS [4] developed his theory which gives fracture criteria for
solids in general, without limitations as to their linearity, elastic behaviour or
infinitesimal strain. He considered an infinite sheet of an elastic material with a
crack of length ‘@’ and loaded at infinity by a uniform stress, oy, acting normally
to the crack axis (Fig. 1). X and Yp are Cartesian co-ordinates of a point P of
the specimen, referred to the origin fixed at the centre of the crack and to the
undeformed state.
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F1G. 1. Infinite lamina containing a crack.

The component of the strain energy density, W(P), at any point P, is ex-
pressed as follows:

(12) W(P) = W()f(xay,g())a

where ¢ is the strain and Wy is the corresponding energy density at infinity,
z = Xg/a, and y = Yy/a are the reduced variables, f is a function.

According to the Eq. (1.2), Andrews has shown that the net energy available
for crack propagation can be written as:

(13) 7=~ (52)

Baa )l = 2k(Wy)Woa,

u
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where U is the elastic energy stored in the body, B is the undeformed thickness
of the sheet, k(W) is a dimensionless function depending of the material and
varying with the strain level far from the crack.

In analogy with Linear Elastic Fracture Mechanics, a corrective factor
F(a/w,a/h,...), taking into account the dimension effects (width w, height h,
...), has been introduced for the laboratory specimen [5, 6], and J has been
written as:

(1.4) J = 2k(Wy)WoaF(a/w,a/h,...).

In our recent investigation [6, 7], the experimental terms of Eq. (1.4) have
been determined using an original technique derived from the load separation
criterion [8]. This procedure needs several specimens with different crack lengths.

The aim of this paper is evaluation of the energy parameter J from the
spatial distribution of the numerical strain energy density and comparison of the
results obtained in this way to the J integral of Rice. This approach brings us
some indications about the truth of the relation (1.2) of Andrews in the case of
the laboratory specimen. We finally suggest an expression of the strain energy
density leading to a simple method which requires to perform the measurements
on only one specimen to determine the fracture surface energy.

2. EXPERIMENTAL

2.1. Materials, specimens, tests

The materials selected in this investigation are:

* An ethylene-propylene-diene rubber (E.P.D.M), reticulated with sulphur
and filled with carbon black. The volume fraction of carbon black is about 30
percent and the average size of the particles is 5 ym. This material displays de-
formation up to 15% and exhibits a non-linear but dissipative behaviour involved
by the detachment of the particles from the polymeric matrix when loading the
specimen.

e A polybutadiene (P.B.) which is a synthetic elastomer used as a binding
agent in the preparation of solid propellants. This material displays large defor-
mation (up to 130%) and its mechanical behaviour, which is nonlinear elastic,
can be described using the hyperelastic formalism.

The fracture tests (Mode I) have been performed using the Single Edge Notch
in Tension (S.E.N.T.) and the Double Edge Notch in Tension (D.E.N.T") speci-
mens (Figs. 2 and 3), on a conventional Instron tensile machine, at room temper-
ature and under a constant crosshead speed of 10 mm,/mn. The specimen, the
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dimensions of which are summarised in Table 1, were cut from the same material
plate. The cracks were introduced using a razor blade.

Fic. 3. D.E.N.T. specimen.

Table 1. Dimensions of specimens.

Material specimen | Height h | width w | thickness B | crack length/width
(mm) (mm) (mm) (a/w)
E.P.D.M. S.E.N.T. 200 40 3.4 0.3, 0.4, 0.5, 0.6, 0.7
polybutadiene { S.E.N.T. 200 40 4.5 0.3,04, 05, 0.7
D.E.N.T. 200 80 4.5 0.4, 0.5, 0.6, 0.7

A self-gripping fixture screwed to the tensile machine theoretically ensures the
specimen to be loaded under displacement control. Only one test is conducted
for a given crack length. The obtained load-displacement curves, recorded until
total breaking, are shown in Fig. 4. The circles denote the crack initiation in the
case of the SENT specimens, and the locus of these points is represented by a
dotted line.
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Fic. 4. Load-displacement curves of S.E.N.T. specimens. Circles denote the crack initiation
points.

3. FINITE ELEMENT PROCEDURE

‘The numerical study was carried out by means of the ANSYS finite element,
program. Although this program contains hyperelastic elements, these one are
developed only for the plane-strain and axisymmetric problems. So, since the
sheets we used were thin, we tacked up another element which provides a ca-
pability to model plane-stress problems with large strains, including geometrical
non-linearity. Unlike the case of plasticity, no permanent inelastic strains are
induced and no energy is lost (the process is conservative).

The experimental identification of the constitutive law of our materials has
been clearly described in our previous work [6]. Figure 5 shows the obtained
results in terms of the engineering stress as a function of the extension ratio A
(final length/original length).

The discrete values (about one hundred) of true stress:

F
3.1 = )
( ) g SO )
as functions of logarithmic strains:
(3.2) e = In(A)

introduced in the numerical model, are extracted from an average curve schema-
tised by the solid line in Fig. 5. In Eq. (3.1), Sy represents the undeformed
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section of the specimen, and F' is the applied load. The materials are assumed to
be elastic and virtually incompressible (Poisson’s ratio = 0.499). Regarding the
symmetries, only a half and a quarter of the plate were analysed for the S.E.N.T
and the D.E.N.T. specimens, respectively.
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Fic. 5. Mechanical behaviour of the materials.

Discretization consists of approximately:
e 1440 isoparametric quadrilaterals with eight nodes (Fig. 6) for the calcula-
tion based upon the Andrews approach (Sec. 5.1);

'l

h/2

1 : e
—

FIG. 6. Finite element meshing used for the calculation of J based upon the Andrews approach,
Eq. (5.5).
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* 800 elements for the evaluation of the contour J integral (Egs. (1.1) and
(5.18)). This meshing include triangles with six nodes in the vicinity of the crack
tip and quadrilaterals with eight nodes far from the crack (Fig. 7).
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F1G. 7. Gridwork used for the calculation of the contour J integral, Eqs. (1.1), (5.18). Dotted
lines represent the contours.

The loading is simulated by gradual increase of the displacement of the nodes
situated on the side opposite to the crack surface, with equilibrium iteration at
each step (Newton-Raphson method). The numerical analysis gives the compo-
nents of the strain and the stress tensors. Then, we evaluate in the postprocessor
the strain energy density using the von Mises equivalent strain (€eq) and equiva-
lent stress (oeq):

€eq
(3.3) W = / Ceqdeeg.
0

4. COMPARISON OF CALCULATED RESULTS WITH EXPERIMENT

Our previous papers [6, 7] dealt with the experimental and the numerical
evaluation of the .J integral (Eq. (1.1)) on the same rubber-like materials studied
here. A positive correlation has been observed between the experimental and
the numerical results which, in particular, confirm the validity of the numerical
model. Moreover, it has been clearly shown that crack initiation in such materials
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is governed by the critical value of the J integral of Rice, allowing us to consider
the values of this integral as a reference in the present study.

5. DETERMINATION OF THE ENERGY PARAMETER USING THE STRAIN ENERGY
DENSITY DISTRIBUTION

5.1. Calculation based upon the Andrews approach
According to the Eq. (1.2), an increment of crack growth, at constant Wy (or
€0), changes at point P the energy density:
dW (P) _OWdz OWdy
da lw, Oz da Oy da
Y [8W d(Xo/a) . oW d(Yy/a)
N aX() da 8YO da

(5.1)

} dXydYp.

The energy parameter J derived from the relation (5.1) is expressed as:

6Wd XQ/G,) 6Wd(Y0/a)]
// [axo da 9V, da dXod¥o.

2 = —
(5:2) J= Bda

where the subscript u indicates that the differentiation is carried out at constant
displacement, of the external clamped boundaries.

Let Ry(Og, Xo,Yy) be any fixed orthogonal co-ordinate system, and
R(O,X,Y) be the one located at the crack tip, so that its origin moves with
the advancing crack. The axes OXy and OX are parallel to the crack surface.
In this case, assuming that OX is the crack growth direction (dX = —da), we
obtain:

d(Xofa) _ Xo  d(Yofa) _ Yo  d(X/a) _1dX X 1 X

da a?’ da T a2’ do  ada @ o a?
d(Y/a) Y
and T = —(—15.

Thus, the Eq. (5.2) becomes:

oW oW
(5.3) J = ~// [mxw 8},0} dXodYo,

Xo Yo

when a fixed co-ordinate system Rg(Og, Xo, Yp) is considered, and:

(5.4) J= //[ —( X+88V}f )]dXdY,
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when considering the co-ordinate system R(O, X,Y) which moves with the ad-
vancing crack.
The relation (5.4) can be rewritten as:

(5.5) :é |i(//X——dXdY> (!/Y—deX)

+//——dXdY =1 /RleY+/Rde +/R2XdY,
XY Y X Y

where

oW
5 '
(5.6) Rix = [ S2dX = / Xdw,
i Y ow
(5.7) Ry = [ S2av = / Ydw,
(5.8) Roy = ‘Z—de W(w—a,Y)-W(-a,Y).

X

W(w —a,Y) and W(—a,Y) are the strain energy density at the right-hand
side and on the left-hand side of the specimen over the range Y, respectively.
The equation (5.3) referred to a fixed co-ordinate system can be rewritten as the
expression (5.5) without the term Ryyx.

To evaluate Ry x, plots are made of the values of energy density W (at the cen-
tre of elements) as a function of the abscissa X for various values of co-ordinates
Y (Fig. 8). The co-ordinates (X,Y) are always referred to the unstrained speci-
men. Ryy is then evaluated by graphical integration of X with respect to W, and
the values obtained are shown versus Y in the Fig. 9. In a similar manner, Ry
is obtained from the graphs of W versus Y (Fig. 10) and takes the form shown in
Fig. 11 when plotted against X. The term Rpy evaluated analytically is plotted
versus Y in Fig. 12.

Graphical integration finally gives the terms / RyxdY, / RydX and

/ RyxdY. According to the Eq.(5.5), the summation of these terms gives the

energy parameter J. The results obtained, referred to three Cartesian co-ordinate
systems, are plotted in Fig. 13 against the strain energy density Wy for both the
two materials studied. It is clearly shown that the values of J depend upon the
co-ordinate system position, and they are negative in the case of the polybuta-
diene, thus leading to the conclusion that the parameter J of Eq. (5.5) has no
physical meaning.
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F1G. 8. Plots of input energy density versus X for P.B.
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F1G. 9. Plots of Ryx versus Y for P.B.
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F1G. 10. Plots of input energy density versus Y for P.B.
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Fic. 13. Energy parameter J (Eq. (5.5)) versus the uniform strain energy density Wy (SENT

specimen). (@) - co-ordinate system R(O, X,Y’) located at the crack tip; (¢) — co-ordinate

system R;(O1,X1,Y) such as X; = X + 21; (o) - co-ordinate system Ry(O2,X2,Y) such as
Xo =X +23.
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Although the results were illustrated in different stages of the previous calcu-
lation for the crack length a/w = 0.5 of the SENT specimen of the polybutadiene,
it must be noted that the same trends have been observed for all other cases.

The presented dependence of the energy parameter of the relation (5.5) upon
the co-ordinate system position has been theoretically proved by expressing J in
a fixed co-ordinate system R;(0O;, X1,Y7) such as X; = X+ C (C is a constant)
and Y1 = Y():

(5.9 / / [53;1& Yl] dX,dY;

X1Y1
oW
(X —_— d(X Y
//[ X0+C 0+O)+8YOYO} (Xo + C)dYy

Xo Yo

1 ow ow

- 5/ /[8X0 (Xo+C) + 51—/—1/0] dXodY,.
Xo Yo

The values of J given by the expression (5.9) are related to the constant C
which defines the position of the co-ordinate system.

These results suggest the necessity to re-examine the expression (1.2) of the
local strain energy density W when dealing with laboratory specimens. However,
as suggested by Andrews, in the case of an infinite sheet where the only identi-

fiable origin of the co-ordinate system is the crack tip, this equation is perhaps
correct.

5.2. A sumplified J integral

The simple idea is to formulate the local strain energy density W as a func-
tion of the Cartesian co-ordinates (X,Y) and the crack length ‘a’ which are
independent of each other, instead of the reduced variables z and y (Eq. (1.2)):

(5.10) W(P) = Wy f(X,Y,a,co).
The differentiation of W(P) with respect to the crack length, at constant Wy or
€0, is:
AW(P)|_OWAX | OWdY  OWda
da |w, 0X da  OY da Oa da
The energy parameter J is then expressed as:

dW (P)
5.12 J=- —_—
( ) ZP: Bda

(5.11)

dXdy
Wo
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(5.12) //[6WdX oW dY  OW da dXdY,

9X da T oY da T Ba da

[cont.]

which represents the energy release rate due to an increment of crack growth ‘da’.

The derivative —2 equals zero for any system of orthogonal co-ordinates
a

whose X-axis is parallel to the notch surface.
When referring to a fixed co-ordinate system Ro(Og, Xo, Yp), the Eq. (5.12)
becomes:

(5.13) //dW’ dXodYo,

Xo Yo

since dXy/da = 0.

The energy parameter given by the relation (5.13) represents an energetic
interpretation of the J-integral. It can be evaluated, using a total strain en-
ergy, either experimentally by the methods which require several specimens (en-
ergy separation criterion [5, 7], compliance method [9],...), or numerically by the
method of WATWOOD {10] which requires double analyses.

Considering the co-ordinate system R(O, X,Y’) in which the origin is located
at the crack tip so that, moving with the advancing crack (ie. dX = —da,
assuming that O X is the crack growth direction), the Eq. (5.12) can be written as:

(5.14) J:)ny (‘Z—V;) dXdY — //( )dXdY

Let Py and P, be the two points of the sheet defined before and after the
crack growth, respectively, but having the same Cartesian co-ordinates (X,Y).
For an infinitesimal crack propagation ‘da’ which proceeds at constant strain &g
far from the crack, the points Py and P; are subjected to a similar interaction so
that the strain energy densities W (Py) and W (Py) are quite identical. Thus:

(5.15) (%) ‘X’Y =0.

This approximation can be introduced according to the principle of virtual work:

(5.16) !}/ @—T) dXdY:)[Y/ <a,-j%5—;i> dXdY = /< )dS

where I'g is the curve bounding the total area of the body, dS is a small element
on 'y, &; is the strain tensor, T; is the traction vector related to the stress tensor
by T; = o3jn;, u; is the displacement vector, and n; is the outward normal on
the border of the specimen.
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Assuming that the crack grows at constant displacement of the clamped
boundary, the right-hand side of Eq. (5.16) vanishes. Then, the energy parameter
J given by the relation (5.14) is reduced to the following form:

(5.17) J:Z! (Z_I;I({) dXxdy.

According to the theorem of Gauss which allows to transform an integration
over a surface into an integration along the curve bounding the total area of this
surface, the energy parameter of the relation (5.17) becomes:

(5.18) / / < )dXdY / WngdS = / Wdy

as suggested by OH [11], who pointed out that, taking a path along a stress-

free boundary (T; = 0) or along a clamped boundary parallel to the X-axis

(0u;/0X = 0), reduces the second term (J2 T; - gX dS) of the J integral of
Lo

Rice to zero.

We have evaluated the term Jy for one crack length (a/w = 0.5) of the
S.E.N.T. specimen of the polybutadiene by considering four contours at increasing
distances from the crack tip (Fig. 7). The results obtained are compared to the
corresponding values of the J integral for different levels of the extension ratio A
(Table 2). It is clearly seen that the term Jy decreases as the integration curve
moves away from the notch. It represents 65 to 70 percent of the J integral when
it is evaluated along a contour chosen in the vicinity of the crack tip (contour 1),
and it becomes insignificant when the integration path is sufficiently close to the
boundary of the specimen (contour 4).

Table 2. Comparison betwen the term J, and the J integral for four contours (Fig. 7) at

increasing distances from the vicinity of the crack tip.

Jo/J (Rice integral)
A Contour 1 | Contour 2 | Contour 3 | Contour 4

% % % %
1.04 70 40 18 0.3
1.08 68 39 17 0.1
1.12 67 37 17 0.2
1.16 66 36 17 0.8
1.20 65 35 17 1.5

The term J; of Eq. (5.18) is then calculated, for all the studied configurations,
through the contour (4) which bounds the total area of the body (Fig. 7). For
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the SENT specimens, the values of this parameter are close to those of the J
integral with a difference less than 4 percent (Fig. 14). Concerning the DENT
specimens, the deviation reaches 10 percent for small values of the uniform strain
energy density Wy and becomes smaller for higher values of Wy (Fig. 15).
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Fic. 14. Ratio J1/J (Rice integral) as a function of the uniform strain energy density Wy
(SENT specimen).
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F1c. 15. Ratio J1/J as function of the uniform strain energy density Wo (DENT specimen).

Figure 16 shows the numerical values J, of J1, corresponding to the on-
set of crack growth (Fig. 4) and computed using the experimental critical dis-
placements. The horizontal solid lines indicate the average critical J; value of
0.312 kJ/m? for the P.B. and of 1.88 kJ/m? for the E.P.D.M. The variation of
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J. evaluated for different crack lengths is about +1 percent and £2 percent for
the P.B. and the E.P.D.M., respectively. These results lead us to the conclusion
that the crack initiation is governed by a critical value of J; in such materials.
Moreover, a direct experimental determination of the fracture toughness J; using
a single specimen is therefore possible provided that the strain distribution along
the border of the sheet is measured. In this case, by symmetry, only one half of
the body needs to be considered.
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F1G. 16. Numerical fracture energy J. evaluated from the relation (5.18) as a function of the
crack length (S.E.N.T. specimen).

6. CONCLUSION

The values of Rice integral J have been considered as a reference according
to the results obtained in our previous works [6, 7).

Some serious shortcomings have been underlined in the equation of the strain
energy density distribution proposed by Andrews, when dealing with the labo-
ratory specimens. The energy parameter J derived from this equation has no
physical meaning since its values depend on the position of the co-ordinate sys-
tem.

The expression of the strain energy density we suggested leads to a simplified
J integral evaluated along the borderlines of the specimen. In this case, J depends
only on the strain energy density, so, provided the strain distribution along this
path is experimentally measured, this parameter and the fracture surface energy
can be determined by testing only one specimen.
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